These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 8547346)
1. Synthesis and structural characterisation of analogues of the potassium channel blocker charybdotoxin. Dyke TR; Duggan BM; Pennington MW; Byrnes ME; Kem WR; Norton RS Biochim Biophys Acta; 1996 Jan; 1292(1):31-8. PubMed ID: 8547346 [TBL] [Abstract][Full Text] [Related]
2. Solution structure for Pandinus toxin K-alpha (PiTX-K alpha), a selective blocker of A-type potassium channels. Tenenholz TC; Rogowski RS; Collins JH; Blaustein MP; Weber DJ Biochemistry; 1997 Mar; 36(10):2763-71. PubMed ID: 9062103 [TBL] [Abstract][Full Text] [Related]
3. Solution structure of a K(+)-channel blocker from the scorpion Tityus cambridgei. Wang I; Wu SH; Chang HK; Shieh RC; Yu HM; Chen C Protein Sci; 2002 Feb; 11(2):390-400. PubMed ID: 11790849 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of charybdotoxin and of two N-terminal truncated analogues. Structural and functional characterisation. Vita C; Bontems F; Bouet F; Tauc M; Poujeol P; Vatanpour H; Harvey AL; Menez A; Toma F Eur J Biochem; 1993 Oct; 217(1):157-69. PubMed ID: 7693459 [TBL] [Abstract][Full Text] [Related]
5. Structure-guided transformation of charybdotoxin yields an analog that selectively targets Ca(2+)-activated over voltage-gated K(+) channels. Rauer H; Lanigan MD; Pennington MW; Aiyar J; Ghanshani S; Cahalan MD; Norton RS; Chandy KG J Biol Chem; 2000 Jan; 275(2):1201-8. PubMed ID: 10625664 [TBL] [Abstract][Full Text] [Related]
6. Consequence of the removal of evolutionary conserved disulfide bridges on the structure and function of charybdotoxin and evidence that particular cysteine spacings govern specific disulfide bond formation. Drakopoulou E; Vizzavona J; Neyton J; Aniort V; Bouet F; Virelizier H; Ménez A; Vita C Biochemistry; 1998 Feb; 37(5):1292-301. PubMed ID: 9477955 [TBL] [Abstract][Full Text] [Related]
7. Interaction of agitoxin2, charybdotoxin, and iberiotoxin with potassium channels: selectivity between voltage-gated and Maxi-K channels. Gao YD; Garcia ML Proteins; 2003 Aug; 52(2):146-54. PubMed ID: 12833539 [TBL] [Abstract][Full Text] [Related]
9. Electrostatic interaction between charybdotoxin and a tetrameric mutant of Shaker K(+) channels. Thompson J; Begenisich T Biophys J; 2000 May; 78(5):2382-91. PubMed ID: 10777734 [TBL] [Abstract][Full Text] [Related]
10. Structural determinants of scorpion toxin affinity: the charybdotoxin (alpha-KTX) family of K(+)-channel blocking peptides. Tenenholz TC; Klenk KC; Matteson DR; Blaustein MP; Weber DJ Rev Physiol Biochem Pharmacol; 2000; 140():135-85. PubMed ID: 10857399 [No Abstract] [Full Text] [Related]
11. Mode of action of iberiotoxin, a potent blocker of the large conductance Ca(2+)-activated K+ channel. Candia S; Garcia ML; Latorre R Biophys J; 1992 Aug; 63(2):583-90. PubMed ID: 1384740 [TBL] [Abstract][Full Text] [Related]
12. NMR solution structure of a two-disulfide derivative of charybdotoxin: structural evidence for conservation of scorpion toxin alpha/beta motif and its hydrophobic side chain packing. Song J; Gilquin B; Jamin N; Drakopoulou E; Guenneugues M; Dauplais M; Vita C; Ménez A Biochemistry; 1997 Apr; 36(13):3760-6. PubMed ID: 9092804 [TBL] [Abstract][Full Text] [Related]
13. The 'functional' dyad of scorpion toxin Pi1 is not itself a prerequisite for toxin binding to the voltage-gated Kv1.2 potassium channels. Mouhat S; Mosbah A; Visan V; Wulff H; Delepierre M; Darbon H; Grissmer S; De Waard M; Sabatier JM Biochem J; 2004 Jan; 377(Pt 1):25-36. PubMed ID: 12962541 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2. Jäger H; Grissmer S Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028 [TBL] [Abstract][Full Text] [Related]
15. Solution structure of potassium channel-inhibiting scorpion toxin Lq2. Renisio JG; Lu Z; Blanc E; Jin W; Lewis JH; Bornet O; Darbon H Proteins; 1999 Mar; 34(4):417-26. PubMed ID: 10081954 [TBL] [Abstract][Full Text] [Related]
16. Molecular Information of charybdotoxin blockade in the large conductance calcium-activated potassium channel. Qiu S; Yi H; Liu H; Cao Z; Wu Y; Li W J Chem Inf Model; 2009 Jul; 49(7):1831-8. PubMed ID: 19499912 [TBL] [Abstract][Full Text] [Related]
17. Molecular structure of charybdotoxin, a pore-directed inhibitor of potassium ion channels. Massefski W; Redfield AG; Hare DR; Miller C Science; 1990 Aug; 249(4968):521-4. PubMed ID: 1696395 [TBL] [Abstract][Full Text] [Related]
18. Solution synthesis of charybdotoxin (ChTX), a K+ channel blocker. Lambert P; Kuroda H; Chino N; Watanabe TX; Kimura T; Sakakibara S Biochem Biophys Res Commun; 1990 Jul; 170(2):684-90. PubMed ID: 1696475 [TBL] [Abstract][Full Text] [Related]
19. Nuclear magnetic resonance structural studies of a potassium channel-charybdotoxin complex. Yu L; Sun C; Song D; Shen J; Xu N; Gunasekera A; Hajduk PJ; Olejniczak ET Biochemistry; 2005 Dec; 44(48):15834-41. PubMed ID: 16313186 [TBL] [Abstract][Full Text] [Related]
20. Exploring structural features of the interaction between the scorpion toxinCnErg1 and ERG K+ channels. Frénal K; Xu CQ; Wolff N; Wecker K; Gurrola GB; Zhu SY; Chi CW; Possani LD; Tytgat J; Delepierre M Proteins; 2004 Aug; 56(2):367-75. PubMed ID: 15211519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]