These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 8547349)

  • 21. Inhibition of hydroxyapatite crystal growth by bone-specific and other calcium-binding proteins.
    Romberg RW; Werness PG; Riggs BL; Mann KG
    Biochemistry; 1986 Mar; 25(5):1176-80. PubMed ID: 3008822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional analysis of bone sialoprotein: identification of the hydroxyapatite-nucleating and cell-binding domains by recombinant peptide expression and site-directed mutagenesis.
    Harris NL; Rattray KR; Tye CE; Underhill TM; Somerman MJ; D'Errico JA; Chambers AF; Hunter GK; Goldberg HA
    Bone; 2000 Dec; 27(6):795-802. PubMed ID: 11113390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of hydroxyapatite growth by casein, a potential salivary phosphoprotein homologue.
    Romero MJ; Nakashima S; Nikaido T; Ichinose S; Sadr A; Tagami J
    Eur J Oral Sci; 2015 Aug; 123(4):288-96. PubMed ID: 26083784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational changes of bovine bone osteonectin induced by interaction with calcium.
    Takita H; Kuboki Y
    Calcif Tissue Int; 1995 Jun; 56(6):559-65. PubMed ID: 7648487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MEPE-ASARM peptides control extracellular matrix mineralization by binding to hydroxyapatite: an inhibition regulated by PHEX cleavage of ASARM.
    Addison WN; Nakano Y; Loisel T; Crine P; McKee MD
    J Bone Miner Res; 2008 Oct; 23(10):1638-49. PubMed ID: 18597632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of polycarboxylic acids in calcium phosphate mineralization.
    Tsortos A; Nancollas GH
    J Colloid Interface Sci; 2002 Jun; 250(1):159-67. PubMed ID: 16290647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SPARC is a source of copper-binding peptides that stimulate angiogenesis.
    Lane TF; Iruela-Arispe ML; Johnson RS; Sage EH
    J Cell Biol; 1994 May; 125(4):929-43. PubMed ID: 7514608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping of SPARC/BM-40/osteonectin-binding sites on fibrillar collagens.
    Giudici C; Raynal N; Wiedemann H; Cabral WA; Marini JC; Timpl R; Bächinger HP; Farndale RW; Sasaki T; Tenni R
    J Biol Chem; 2008 Jul; 283(28):19551-60. PubMed ID: 18487610
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of phosphatidylserine on in vitro hydroxyapatite growth and proliferation.
    Boskey AL; Dick BL
    Calcif Tissue Int; 1991 Sep; 49(3):193-6. PubMed ID: 1657326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How does bone sialoprotein promote the nucleation of hydroxyapatite? A molecular dynamics study using model peptides of different conformations.
    Yang Y; Cui Q; Sahai N
    Langmuir; 2010 Jun; 26(12):9848-59. PubMed ID: 20438109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of apatite crystal growth by the amino-terminal segment of human salivary acidic proline-rich proteins.
    Aoba T; Moreno EC; Hay DI
    Calcif Tissue Int; 1984 Dec; 36(6):651-8. PubMed ID: 6099209
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational changes in salivary proline-rich protein 1 upon adsorption to calcium phosphate crystals.
    Elangovan S; Margolis HC; Oppenheim FG; Beniash E
    Langmuir; 2007 Oct; 23(22):11200-5. PubMed ID: 17880251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional mapping of SPARC: peptides from two distinct Ca+(+)-binding sites modulate cell shape.
    Lane TF; Sage EH
    J Cell Biol; 1990 Dec; 111(6 Pt 2):3065-76. PubMed ID: 2269665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of non-collagenous proteins on the formation of apatite in calcium beta-glycerophosphate solutions.
    Doi Y; Horiguchi T; Kim SH; Moriwaki Y; Wakamatsu N; Adachi M; Ibaraki K; Moriyama K; Sasaki S; Shimokawa H
    Arch Oral Biol; 1992 Jan; 37(1):15-21. PubMed ID: 1596204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-assembly and mineralization of peptide-amphiphile nanofibers.
    Hartgerink JD; Beniash E; Stupp SI
    Science; 2001 Nov; 294(5547):1684-8. PubMed ID: 11721046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel.
    Boskey AL; Maresca M; Ullrich W; Doty SB; Butler WT; Prince CW
    Bone Miner; 1993 Aug; 22(2):147-59. PubMed ID: 8251766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of a Phage-Display Method to Identify Peptides that Bind to a Tin Oxide Nanosheets.
    Nakazawa H; Seta Y; Hirose T; Masuda Y; Umetsu M
    Protein Pept Lett; 2018; 25(1):68-75. PubMed ID: 29210630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of endothelial cell proliferation by SPARC is mediated through a Ca(2+)-binding EF-hand sequence.
    Sage EH; Bassuk JA; Yost JC; Folkman MJ; Lane TF
    J Cell Biochem; 1995 Jan; 57(1):127-40. PubMed ID: 7721952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Primary sequence characterization of catestatin intermediates and peptides defines proteolytic cleavage sites utilized for converting chromogranin a into active catestatin secreted from neuroendocrine chromaffin cells.
    Lee JC; Taylor CV; Gaucher SP; Toneff T; Taupenot L; Yasothornsrikul S; Mahata SK; Sei C; Parmer RJ; Neveu JM; Lane WS; Gibson BW; O'Connor DT; Hook VY
    Biochemistry; 2003 Jun; 42(23):6938-46. PubMed ID: 12795588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DMP1-derived peptides promote remineralization of human dentin.
    Padovano JD; Ravindran S; Snee PT; Ramachandran A; Bedran-Russo AK; George A
    J Dent Res; 2015 Apr; 94(4):608-14. PubMed ID: 25694469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.