These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 8547353)

  • 1. Engineering the C-terminus of firefly luciferase as an indicator of covalent modification of proteins.
    Waud JP; Sala-Newby GB; Matthews SB; Campbell AK
    Biochim Biophys Acta; 1996 Jan; 1292(1):89-98. PubMed ID: 8547353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stepwise removal of the C-terminal 12 amino acids of firefly luciferase results in graded loss of activity.
    Sala-Newby GB; Campbell AK
    Biochim Biophys Acta; 1994 May; 1206(1):155-60. PubMed ID: 8186245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a bioluminescent indicator for cyclic AMP-dependent protein kinase.
    Sala-Newby GB; Campbell AK
    Biochem J; 1991 Nov; 279 ( Pt 3)(Pt 3):727-32. PubMed ID: 1953665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The N-terminal amino acid sequences of the firefly luciferase are important for the stability of the enzyme.
    Sung D; Kang H
    Photochem Photobiol; 1998 Nov; 68(5):749-53. PubMed ID: 9825705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases.
    Viviani VR; Simões A; Bevilaqua VR; Gabriel GV; Arnoldi FG; Hirano T
    Biochemistry; 2016 Aug; 55(34):4764-76. PubMed ID: 27391007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence and biochemical similarities between the luciferases of the glow-worm Lampyris noctiluca and the firefly Photinus pyralis.
    Sala-Newby GB; Thomson CM; Campbell AK
    Biochem J; 1996 Feb; 313 ( Pt 3)(Pt 3):761-7. PubMed ID: 8611152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the C-terminal domain on the bioluminescence activity and color determination in green and red emitting beetle luciferases and luciferase-like enzyme.
    Bevilaqua VR; Carvalho MC; Pelentir GF; Tomazini A; Murakami M; Viviani VR
    Photochem Photobiol Sci; 2021 Jan; 20(1):113-122. PubMed ID: 33721241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of firefly luciferase active site amino acids: a proposed model for bioluminescence color.
    Branchini BR; Magyar RA; Murtiashaw MH; Anderson SM; Helgerson LC; Zimmer M
    Biochemistry; 1999 Oct; 38(40):13223-30. PubMed ID: 10529195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cysteine-free firefly luciferase retains luminescence activity.
    Kumita JR; Jain L; Safroneeva E; Woolley GA
    Biochem Biophys Res Commun; 2000 Jan; 267(1):394-7. PubMed ID: 10623630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved practical usefulness of firefly luciferase by gene chimerization and random mutagenesis.
    Hirokawa K; Kajiyama N; Murakami S
    Biochim Biophys Acta; 2002 Jun; 1597(2):271-9. PubMed ID: 12044905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of thermostability of firefly luciferase from Luciola lateralis by a single amino acid substitution.
    Kajiyama N; Nakano E
    Biosci Biotechnol Biochem; 1994 Jun; 58(6):1170-1. PubMed ID: 7765039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenesis of firefly luciferase shows that cysteine residues are not required for bioluminescence activity.
    Ohmiya Y; Tsuji FI
    FEBS Lett; 1997 Mar; 404(2-3):115-7. PubMed ID: 9119046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermostabilization of firefly luciferase by a single amino acid substitution at position 217.
    Kajiyama N; Nakano E
    Biochemistry; 1993 Dec; 32(50):13795-9. PubMed ID: 8268154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural evolution of luciferase activity in Zophobas mealworm AMP/CoA-ligase (protoluciferase) through site-directed mutagenesis of the luciferin binding site.
    Prado RA; Barbosa JA; Ohmiya Y; Viviani VR
    Photochem Photobiol Sci; 2011 Jul; 10(7):1226-32. PubMed ID: 21505686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of twelve C-terminal amino acids from firefly luciferase abolishes activity.
    Sala-Newby G; Kalsheker N; Campbell AK
    Biochem Biophys Res Commun; 1990 Oct; 172(2):477-82. PubMed ID: 2241947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of active site residue arginine 218 in firefly luciferase bioluminescence.
    Branchini BR; Magyar RA; Murtiashaw MH; Portier NC
    Biochemistry; 2001 Feb; 40(8):2410-8. PubMed ID: 11327861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation of a thermostable firefly luciferase with pH-insensitive luminescent color.
    Kitayama A; Yoshizaki H; Ohmiya Y; Ueda H; Nagamune T
    Photochem Photobiol; 2003 Mar; 77(3):333-8. PubMed ID: 12685663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering firefly luciferase as an indicator of cyclic AMP-dependent protein kinase in living cells.
    Sala-Newby G; Campbell AK
    FEBS Lett; 1992 Jul; 307(2):241-4. PubMed ID: 1322831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface charge modification increases firefly luciferase rigidity without alteration in bioluminescence spectra.
    Mortazavi M; Hosseinkhani S
    Enzyme Microb Technol; 2017 Jan; 96():47-59. PubMed ID: 27871385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the thermostability of recombinant luciferases from Brazilian bioluminescent beetles: Relationship with kinetics and bioluminescence colours.
    Oliveira G; Viviani VR
    Luminescence; 2018 Mar; 33(2):282-288. PubMed ID: 29094493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.