These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 8547468)

  • 1. Inositol trisphosphate-induced calcium release in the generation of calcium oscillations in bovine eggs.
    Fissore RA; Pinto-Correia C; Robl JM
    Biol Reprod; 1995 Oct; 53(4):766-74. PubMed ID: 8547468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inositol 1,4,5-trisphosphate mediates adrenaline activation of K+ conductance in mouse peritoneal macrophages.
    Hara N; Ichinose M; Sawada M; Maeno T
    Pflugers Arch; 1993 Apr; 423(1-2):140-8. PubMed ID: 8387666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sperm, inositol trisphosphate, and thimerosal-induced intracellular Ca2+ elevations in rabbit eggs.
    Fissore RA; Robl JM
    Dev Biol; 1993 Sep; 159(1):122-30. PubMed ID: 8365556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of calcium oscillations in fertilized rabbit eggs.
    Fissore RA; Robl JM
    Dev Biol; 1994 Dec; 166(2):634-42. PubMed ID: 7813782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inositol 1,4,5-trisphosphate-induced calcium release and guanine nucleotide-binding protein-mediated periodic calcium rises in golden hamster eggs.
    Miyazaki S
    J Cell Biol; 1988 Feb; 106(2):345-53. PubMed ID: 3123497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thimerosal potentiates Ca2+ release mediated by both the inositol 1,4,5-trisphosphate and the ryanodine receptors in sea urchin eggs. Implications for mechanistic studies on Ca2+ signaling.
    Tanaka Y; Tashjian AH
    J Biol Chem; 1994 Apr; 269(15):11247-53. PubMed ID: 8157654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of intracellular calcium redistribution by guanine nucleotides and inositol 1,4,5-trisphosphate in permeabilized GH4C1 cells.
    Koshiyama H; Tashjian AH
    Endocrinology; 1991 Jun; 128(6):2715-22. PubMed ID: 1903695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guanine nucleotide- and inositol 1,4,5-trisphosphate-induced calcium release in rabbit main pulmonary artery.
    Kobayashi S; Somlyo AP; Somlyo AV
    J Physiol; 1988 Sep; 403():601-19. PubMed ID: 3150985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different triggers for calcium oscillations in mouse eggs involve a ryanodine-sensitive calcium store.
    Swann K
    Biochem J; 1992 Oct; 287 ( Pt 1)(Pt 1):79-84. PubMed ID: 1417794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of intracellular calcium in the mouse egg: evidence for inositol trisphosphate-induced calcium release, but not calcium-induced calcium release.
    Kline JT; Kline D
    Biol Reprod; 1994 Jan; 50(1):193-203. PubMed ID: 8312443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injection of a porcine sperm factor triggers calcium oscillations in mouse oocytes and bovine eggs.
    Wu H; He CL; Fissore RA
    Mol Reprod Dev; 1997 Feb; 46(2):176-89. PubMed ID: 9021749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A slowly ADP-ribosylated pertussis-toxin-sensitive GTP-binding regulatory protein is required for vasopressin-stimulated Ca2+ inflow in hepatocytes.
    Berven LA; Hughes BP; Barritt GJ
    Biochem J; 1994 Apr; 299 ( Pt 2)(Pt 2):399-407. PubMed ID: 8172600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inositol 1,4,5-trisphosphate- and guanosine 5'-O-(3-thiotriphosphate)-induced Ca2+ release in cultured airway smooth muscle.
    Chopra LC; Twort CH; Cameron IR; Ward JP
    Br J Pharmacol; 1991 Dec; 104(4):901-6. PubMed ID: 1810602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of intracellular calcium in the mouse egg: calcium release in response to sperm or inositol trisphosphate is enhanced after meiotic maturation.
    Mehlmann LM; Kline D
    Biol Reprod; 1994 Dec; 51(6):1088-98. PubMed ID: 7888488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium release and subsequent development induced by modification of sulfhydryl groups in porcine oocytes.
    Macháty Z; Wang WH; Day BN; Prather RS
    Biol Reprod; 1999 Jun; 60(6):1384-91. PubMed ID: 10330097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental changes in the intracellular Ca2+ release mechanisms in porcine oocytes.
    Macháty Z; Funahashi H; Day BN; Prather RS
    Biol Reprod; 1997 Apr; 56(4):921-30. PubMed ID: 9096874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for an inhibitory effect of protein kinase C on G-protein-mediated repetitive calcium transients in hamster eggs.
    Swann K; Igusa Y; Miyazaki S
    EMBO J; 1989 Dec; 8(12):3711-8. PubMed ID: 2510999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of inositol trisphosphate-induced calcium release mechanism during maturation of hamster oocytes.
    Fujiwara T; Nakada K; Shirakawa H; Miyazaki S
    Dev Biol; 1993 Mar; 156(1):69-79. PubMed ID: 8383620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of G-proteins in muscarinic receptor inward and outward currents in rabbit jejunal smooth muscle.
    Komori S; Bolton TB
    J Physiol; 1990 Aug; 427():395-419. PubMed ID: 2120427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP causes release of intracellular Ca2+ via the phospholipase C beta/IP3 pathway in astrocytes from the dorsal spinal cord.
    Salter MW; Hicks JL
    J Neurosci; 1995 Apr; 15(4):2961-71. PubMed ID: 7722640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.