BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 8547717)

  • 1. Cytoskeletal oxidative changes lead to alterations of specific cell surface receptors.
    Malorni W; Rainaldi G; Rivabene R; Santini MT; Peterson SW; Testa U; Donelli G
    Eur J Histochem; 1994; 38 Suppl 1():91-100. PubMed ID: 8547717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human erythrocyte insulin receptor processing is affected by the oxidizing agent menadione.
    Malorni W; Masella R; Santini MT; Iosi F; Samoggia P; Cantafora A; Merrell D; Peterson SW
    Exp Cell Res; 1993 Jun; 206(2):195-203. PubMed ID: 8388799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress leads to a rapid alteration of transferrin receptor intravesicular trafficking.
    Malorni W; Testa U; Rainaldi G; Tritarelli E; Peschle C
    Exp Cell Res; 1998 May; 241(1):102-16. PubMed ID: 9633518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioeffects of moderate-intensity static magnetic fields on cell cultures.
    Dini L; Abbro L
    Micron; 2005; 36(3):195-217. PubMed ID: 15725590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in cytoskeletal actin content, F-actin distribution, and surface morphology during HL-60 cell volume regulation.
    Hallows KR; Law FY; Packman CH; Knauf PA
    J Cell Physiol; 1996 Apr; 167(1):60-71. PubMed ID: 8698841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of the effect of oxidative stress on the cytoskeleton in human cortical neurons.
    Allani PK; Sum T; Bhansali SG; Mukherjee SK; Sonee M
    Toxicol Appl Pharmacol; 2004 Apr; 196(1):29-36. PubMed ID: 15050405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress and transferrin receptor recycling.
    Malorni W; Iosi F; Santini MT; Rivabene R; Testa U
    Cytotechnology; 1993; 11 Suppl 1():S53-5. PubMed ID: 7763758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of K562 and HL-60 cells to edelfosine, an ether lipid drug, correlates with production of reactive oxygen species.
    Wagner BA; Buettner GR; Oberley LW; Burns CP
    Cancer Res; 1998 Jul; 58(13):2809-16. PubMed ID: 9661895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress affects cytoskeletal structure and cell-matrix interactions in cells from an ocular tissue: the trabecular meshwork.
    Zhou L; Li Y; Yue BY
    J Cell Physiol; 1999 Aug; 180(2):182-9. PubMed ID: 10395288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane and cytoskeleton are intracellular targets of rhein in A431 cells.
    Iosi F; Santini MT; Malorni W
    Anticancer Res; 1993; 13(2):545-54. PubMed ID: 8390805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoskeleton as a target in menadione-induced oxidative stress in cultured mammalian cells: alterations underlying surface bleb formation.
    Malorni W; Iosi F; Mirabelli F; Bellomo G
    Chem Biol Interact; 1991; 80(2):217-36. PubMed ID: 1934151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The lipocalin alpha1-microglobulin protects erythroid K562 cells against oxidative damage induced by heme and reactive oxygen species.
    Olsson MG; Olofsson T; Tapper H; Akerstrom B
    Free Radic Res; 2008 Aug; 42(8):725-36. PubMed ID: 18712632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages.
    Stroh A; Zimmer C; Gutzeit C; Jakstadt M; Marschinke F; Jung T; Pilgrimm H; Grune T
    Free Radic Biol Med; 2004 Apr; 36(8):976-84. PubMed ID: 15059638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological alterations and induction of oxidative stress in glial cells caused by the branched-chain alpha-keto acids accumulating in maple syrup urine disease.
    Funchal C; Latini A; Jacques-Silva MC; Dos Santos AQ; Buzin L; Gottfried C; Wajner M; Pessoa-Pureur R
    Neurochem Int; 2006 Dec; 49(7):640-50. PubMed ID: 16822590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome and cytoskeleton responses in osteosarcoma cells with reduced OXPHOS activity.
    Annunen-Rasila J; Ohlmeier S; Tuokko H; Veijola J; Majamaa K
    Proteomics; 2007 Jun; 7(13):2189-200. PubMed ID: 17533645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EPR spin-trapping of protein radicals to investigate biological oxidative mechanisms.
    Augusto O; Muntz Vaz S
    Amino Acids; 2007; 32(4):535-42. PubMed ID: 17048125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock protein 27 downregulates the transferrin receptor 1-mediated iron uptake.
    Chen H; Zheng C; Zhang Y; Chang YZ; Qian ZM; Shen X
    Int J Biochem Cell Biol; 2006; 38(8):1402-16. PubMed ID: 16546437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
    Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA
    J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial "movement" and lens optics following oxidative stress from UV-B irradiation: cultured bovine lenses and human retinal pigment epithelial cells (ARPE-19) as examples.
    Bantseev V; Youn HY
    Ann N Y Acad Sci; 2006 Dec; 1091():17-33. PubMed ID: 17341599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.