These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 8548849)

  • 1. Treatment of Candida albicans mannan-specific downregulatory cell populations with divergent concentrations of monophosphoryl lipid A and intact lipopolysaccharide in vitro abrogates their effect on delayed hypersensitivity.
    Domer JE; Asherson GL; Li S
    Cell Immunol; 1996 Jan; 167(1):8-17. PubMed ID: 8548849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abrogation of suppression of delayed hypersensitivity induced by Candida albicans-derived mannan by treatment with monophosphoryl lipid A.
    Domer JE; Human LG; Andersen GB; Rudbach JA; Asherson GL
    Infect Immun; 1993 May; 61(5):2122-30. PubMed ID: 8478102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in frequency of interleukin-2 (IL-2)-, gamma interferon-, or IL-4-secreting splenocytes induced by Candida albicans mannan and/or monophosphoryl lipid A.
    Li SP; Lee SI; Domer JE
    Infect Immun; 1998 Apr; 66(4):1392-9. PubMed ID: 9529058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytokine involvement in immunomodulatory activity affected by Candida albicans mannan.
    Wang Y; Li SP; Moser SA; Bost KL; Domer JE
    Infect Immun; 1998 Apr; 66(4):1384-91. PubMed ID: 9529057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Candida albicans mannan-specific, delayed hypersensitivity down-regulatory CD8+ cells are genetically restricted effectors and their production requires CD4 and I-A expression.
    Li SP; Lee SI; Wang Y; Domer JE
    Int Arch Allergy Immunol; 1996 Apr; 109(4):334-43. PubMed ID: 8634517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Candida albicans mannan-induced, mannan-specific delayed hypersensitivity suppressor cells.
    Garner RE; Childress AM; Human LG; Domer JE
    Infect Immun; 1990 Aug; 58(8):2613-20. PubMed ID: 2142482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monophosphoryl lipid A as a prophylactic for sepsis and septic shock.
    Gustafson GL; Rhodes MJ; Hegel T
    Prog Clin Biol Res; 1995; 392():567-79. PubMed ID: 8524964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preservation of global cardiac function in the rabbit following protracted ischemia/reperfusion using monophosphoryl lipid A (MLA).
    Zhao L; Kirsch CC; Hagen SR; Elliott GT
    J Mol Cell Cardiol; 1996 Jan; 28(1):197-208. PubMed ID: 8745227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of iNOS gene expression by monophosphoryl lipid A: a pharmacological approach for myocardial adaptation to ischemia.
    Maulik N; Tosaki A; Elliott GT; Maulik G; Das DK
    Drugs Exp Clin Res; 1998; 24(3):117-24. PubMed ID: 9825227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The role of the structural components of bacterial lipopolysaccharide in its inductive immunosuppressive activity].
    Borisova EV
    Mikrobiol Z; 1999; 61(6):36-41. PubMed ID: 10707531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide-dependent mechanism of anti-ischemic myocardial protection induced by monophosphoryl lipid A.
    Xi L
    Zhongguo Yao Li Xue Bao; 1999 Oct; 20(10):865-71. PubMed ID: 11270982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of inducible nitric oxide synthase in pharmacological "preconditioning" with monophosphoryl lipid A.
    Zhao L; Weber PA; Smith JR; Comerford ML; Elliott GT
    J Mol Cell Cardiol; 1997 Jun; 29(6):1567-76. PubMed ID: 9220342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The inductive immunosuppressive activity of the lipopolysaccharide from Shigella sonnei R forms].
    Borisova EV
    Mikrobiol Z; 1998; 60(3):63-9. PubMed ID: 9785801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preconditioning of rat heart with monophosphoryl lipid A: a role for nitric oxide.
    Tosaki A; Maulik N; Elliott GT; Blasig IE; Engelman RM; Das DK
    J Pharmacol Exp Ther; 1998 Jun; 285(3):1274-9. PubMed ID: 9618433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the biological activity of bacterial endotoxin by incorporation into liposomes.
    Dijkstra J; Mellors JW; Ryan JL; Szoka FC
    J Immunol; 1987 Apr; 138(8):2663-70. PubMed ID: 3494081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of tumor necrosis factor and dexamethasone on the regulation of interferon-gamma induction by monophosphoryl lipid A.
    Gustafson GL; Rhodes MJ
    J Immunother Emphasis Tumor Immunol; 1994 Feb; 15(2):129-33. PubMed ID: 8136945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of endotoxin response by e5564, a novel Toll-like receptor 4-directed endotoxin antagonist.
    Mullarkey M; Rose JR; Bristol J; Kawata T; Kimura A; Kobayashi S; Przetak M; Chow J; Gusovsky F; Christ WJ; Rossignol DP
    J Pharmacol Exp Ther; 2003 Mar; 304(3):1093-102. PubMed ID: 12604686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel artemisinin derivative, 3-(12-beta-artemisininoxy) phenoxyl succinic acid (SM735), mediates immunosuppressive effects in vitro and in vivo.
    Zhou WL; Wu JM; Wu QL; Wang JX; Zhou Y; Zhou R; He PL; Li XY; Yang YF; Zhang Y; Li Y; Zuo JP
    Acta Pharmacol Sin; 2005 Nov; 26(11):1352-8. PubMed ID: 16225758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of monophosphoryl lipid A on lipopolysaccharide-induced prostaglandin E2 release in human choriodecidua.
    Nicholls L; Farrugia W; Rice GE
    Placenta; 1997 May; 18(4):243-8. PubMed ID: 9179916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-rhamnose inhibits proliferation of murine splenocytes by the lipopolysaccharide and polysaccharide moiety of Shigella dysenteriae type 1 lipopolysaccharide.
    Biswas T; Roy S; Banerjee KK
    Immunology; 1995 Feb; 84(2):322-5. PubMed ID: 7751010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.