These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 8549729)
21. Sensitive detection of potato spindle tuber and temperate fruit tree viroids by reverse transcription-polymerase chain reaction-probe capture hybridization. Shamloul AM; Hadidi A J Virol Methods; 1999 Jul; 80(2):145-55. PubMed ID: 10471024 [TBL] [Abstract][Full Text] [Related]
22. Detection of Coxiella burnetii DNA in dental pulp during experimental bacteremia. Aboudharam G; Lascola B; Raoult D; Drancourt M Microb Pathog; 2000 Apr; 28(4):249-54. PubMed ID: 10764616 [TBL] [Abstract][Full Text] [Related]
23. A cross sectional study evaluating the prevalence of Coxiella burnetii, potential risk factors for infection, and agreement between diagnostic methods in goats in Indiana. Bauer AE; Hubbard KR; Johnson AJ; Messick JB; Weng HY; Pogranichniy RM Prev Vet Med; 2016 Apr; 126():131-7. PubMed ID: 26897246 [TBL] [Abstract][Full Text] [Related]
25. Clinical and epidemiological use of nested PCR targeting the repetitive element IS1111 associated with the transposase gene from Coxiella burnetii. Mares-Guia MAMM; Guterres A; Rozental T; Ferreira MDS; Lemos ERS Braz J Microbiol; 2018; 49(1):138-143. PubMed ID: 28899604 [TBL] [Abstract][Full Text] [Related]
26. [New possibilities for the diagnosis of Q fever and for the differentiation of the causative agent]. Thiele D; Willems H; Krauss H Berl Munch Tierarztl Wochenschr; 1992 Feb; 105(2):45-9. PubMed ID: 1558529 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of a real-time PCR assay to detect Coxiella burnetii. Klee SR; Ellerbrok H; Tyczka J; Franz T; Appel B Ann N Y Acad Sci; 2006 Oct; 1078():563-5. PubMed ID: 17114778 [TBL] [Abstract][Full Text] [Related]
28. Isolation of Coxiella burnetii by a centrifugation shell-vial assay from ticks collected in Cyprus: detection by nested polymerase chain reaction (PCR) and by PCR-restriction fragment length polymorphism analyses. Spyridaki I; Psaroulaki A; Loukaides F; Antoniou M; Hadjichristodolou C; Tselentis Y Am J Trop Med Hyg; 2002 Jan; 66(1):86-90. PubMed ID: 12135275 [TBL] [Abstract][Full Text] [Related]
29. First molecular and serological evidence of Coxiella burnetti infection among sheep and goats of Jammu province of India. Gangoliya SR; Kumar S; Alam SI; Sharma HK; Singh M; Kotwal SK; Berri M; Kamboj DV Microb Pathog; 2019 May; 130():100-103. PubMed ID: 30844472 [TBL] [Abstract][Full Text] [Related]
30. Phylogenic homogeneity of Coxiella burnetii strains as determinated by 16S ribosomal RNA sequencing. Stein A; Saunders NA; Taylor AG; Raoult D FEMS Microbiol Lett; 1993 Nov; 113(3):339-44. PubMed ID: 7505761 [TBL] [Abstract][Full Text] [Related]
31. Rapid detection of human rotavirus using colorimetric nucleic acid sequence-based amplification (NASBA)-enzyme-linked immunosorbent assay in sewage treatment effluent. Jean J; Blais B; Darveau A; Fliss I FEMS Microbiol Lett; 2002 Apr; 210(1):143-7. PubMed ID: 12023091 [TBL] [Abstract][Full Text] [Related]
32. Identification of rickettsiae isolated in Japan as Coxiella burnetii by 16S rRNA sequencing. Masuzawa T; Sawaki K; Nagaoka H; Akiyama M; Hirai K; Yanagihara Y Int J Syst Bacteriol; 1997 Jul; 47(3):883-4. PubMed ID: 9226923 [TBL] [Abstract][Full Text] [Related]
33. Molecular and serologic detection of Coxiella burnetii in native Korean goats (Capra hircus coreanae). Jung BY; Seo MG; Lee SH; Byun JW; Oem JK; Kwak D Vet Microbiol; 2014 Sep; 173(1-2):152-5. PubMed ID: 25061007 [TBL] [Abstract][Full Text] [Related]
34. Occurrence, distribution, and role in abortion of Coxiella burnetii in sheep and goats in Sardinia, Italy. Masala G; Porcu R; Sanna G; Chessa G; Cillara G; Chisu V; Tola S Vet Microbiol; 2004 Apr; 99(3-4):301-5. PubMed ID: 15066733 [TBL] [Abstract][Full Text] [Related]
35. A simple method of HLA-DRB typing using enzymatically amplified DNA and immobilized probes on microtiter plate. Kawai S; Maekawajiri S; Tokunaga K; Juji T; Yamane A Hum Immunol; 1994 Oct; 41(2):121-6. PubMed ID: 7860356 [TBL] [Abstract][Full Text] [Related]
36. Polymerase chain reaction and a liquid-phase, nonisotopic hybridization for species-specific and sensitive detection of malaria infection. Oliveira DA; Holloway BP; Durigon EL; Collins WE; Lal AA Am J Trop Med Hyg; 1995 Feb; 52(2):139-44. PubMed ID: 7872440 [TBL] [Abstract][Full Text] [Related]
37. Plasmid based differentiation and detection of Coxiella burnetii in clinical samples. Willems H; Thiele D; Krauss H Eur J Epidemiol; 1993 Jul; 9(4):411-8. PubMed ID: 8243597 [TBL] [Abstract][Full Text] [Related]
39. [Development of effective detection method for Coxiella burnetii in mayonnaise by real-time PCR and investigation of C. burnetii contamination in commercial mayonnaise in Tokyo]. Sadamasu K; Tabei Y; Shinkai T; Hasegawa M; Kaneko S; Hirai A; Nakama A; Ishizaki N; Odagiri M; Kamata S; Yano K; Kai A; Morozumi S Shokuhin Eiseigaku Zasshi; 2006 Feb; 47(1):1-8. PubMed ID: 16619850 [TBL] [Abstract][Full Text] [Related]
40. [Definitive ability of Stamp-staining, antigen-ELISA, PCR and cell culture for the detection of Coxiella burnetii]. Henning K; Sting R Berl Munch Tierarztl Wochenschr; 2002; 115(9-10):381-4. PubMed ID: 12357676 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]