These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 8549749)
1. Cooperative phenomena in the photocycle of D96N mutant bacteriorhodopsin. Radionov AN; Kaulen AD FEBS Lett; 1995 Dec; 377(3):330-2. PubMed ID: 8549749 [TBL] [Abstract][Full Text] [Related]
2. Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins. Tóth-Boconádi R; Dér A; Keszthelyi L Bioelectrochemistry; 2011 Apr; 81(1):17-21. PubMed ID: 21236739 [TBL] [Abstract][Full Text] [Related]
3. On the two pathways of the M-intermediate formation in the photocycle of bacteriorhodopsin. Drachev LA; Kaulen AD; Komrakov AYu Biochem Mol Biol Int; 1993 Jul; 30(3):461-9. PubMed ID: 8401304 [TBL] [Abstract][Full Text] [Related]
4. Proton uptake and release are rate-limiting steps in the photocycle of the bacteriorhodopsin mutant E204Q. Misra S; Govindjee R; Ebrey TG; Chen N; Ma JX; Crouch RK Biochemistry; 1997 Apr; 36(16):4875-83. PubMed ID: 9125508 [TBL] [Abstract][Full Text] [Related]
5. Formation of the M(N) (M(open)) intermediate in the wild-type bacteriorhodopsin photocycle is accompanied by an absorption spectrum shift to shorter wavelength, like that in the mutant D96N bacteriorhodopsin photocycle. Radionov AN; Klyachko VA; Kaulen AD Biochemistry (Mosc); 1999 Oct; 64(10):1210-4. PubMed ID: 10561570 [TBL] [Abstract][Full Text] [Related]
6. The molecular motion of bacteriorhodopsin mutant D96N in the purple membrane. Kikukawa T; Araiso T; Mukasa K; Shimozawa T; Kamo N FEBS Lett; 1995 Dec; 377(3):502-4. PubMed ID: 8549785 [TBL] [Abstract][Full Text] [Related]
7. Protein conformational changes in the bacteriorhodopsin photocycle. Subramaniam S; Lindahl M; Bullough P; Faruqi AR; Tittor J; Oesterhelt D; Brown L; Lanyi J; Henderson R J Mol Biol; 1999 Mar; 287(1):145-61. PubMed ID: 10074413 [TBL] [Abstract][Full Text] [Related]
8. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes. Tittor J; Paula S; Subramaniam S; Heberle J; Henderson R; Oesterhelt D J Mol Biol; 2002 May; 319(2):555-65. PubMed ID: 12051928 [TBL] [Abstract][Full Text] [Related]
10. [Study of intermediate N using mutant forms of bacteriorhodopsin at Asp-96]. Danshina SV; Drachev LA; Kaulen AD; Korana KhG; Marti T; Mogi T; Skulachev VI Biokhimiia; 1992 Oct; 57(10):1574-85. PubMed ID: 1333821 [TBL] [Abstract][Full Text] [Related]
11. Glycocardiolipin modulates the surface interaction of the proton pumped by bacteriorhodopsin in purple membrane preparations. Corcelli A; Lobasso S; Saponetti MS; Leopold A; Dencher NA Biochim Biophys Acta; 2007 Sep; 1768(9):2157-63. PubMed ID: 17669358 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the azide-dependent bacteriorhodopsin-like photocycle of salinarum halorhodopsin. Lakatos M; Groma GI; Ganea C; Lanyi JK; Váró G Biophys J; 2002 Apr; 82(4):1687-95. PubMed ID: 11916830 [TBL] [Abstract][Full Text] [Related]
13. Importance of specific native lipids in controlling the photocycle of bacteriorhodopsin. Joshi MK; Dracheva S; Mukhopadhyay AK; Bose S; Hendler RW Biochemistry; 1998 Oct; 37(41):14463-70. PubMed ID: 9772173 [TBL] [Abstract][Full Text] [Related]
14. Control of the integral membrane proton pump, bacteriorhodopsin, by purple membrane lipids of Halobacterium halobium. Mukhopadhyay AK; Dracheva S; Bose S; Hendler RW Biochemistry; 1996 Jul; 35(28):9245-52. PubMed ID: 8703930 [TBL] [Abstract][Full Text] [Related]
15. Late events in the photocycle of bacteriorhodopsin mutant L93A. Tóth-Boconádi R; Keszthelyi L; Stoeckenius W Biophys J; 2003 Jun; 84(6):3848-56. PubMed ID: 12770890 [TBL] [Abstract][Full Text] [Related]
16. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin. Kollbach G; Steinmüller S; Berndsen T; Buss V; Gärtner W Biochemistry; 1998 Jun; 37(22):8227-32. PubMed ID: 9609719 [TBL] [Abstract][Full Text] [Related]
17. On the kinetics of voltage formation in purple membranes of Halobacterium salinarium. Hendler RW; Drachev LA; Bose S; Joshi MK Eur J Biochem; 2000 Oct; 267(19):5879-90. PubMed ID: 10998047 [TBL] [Abstract][Full Text] [Related]
18. Role of arginine-82 in fast proton release during the bacteriorhodopsin photocycle: a time-resolved FT-IR study of purple membranes containing 15N-labeled arginine. Xiao Y; Hutson MS; Belenky M; Herzfeld J; Braiman MS Biochemistry; 2004 Oct; 43(40):12809-18. PubMed ID: 15461453 [TBL] [Abstract][Full Text] [Related]
19. Regulation of the bacteriorhodopsin photocycle and proton pumping in whole cells of Halobacterium salinarium. Joshi MK; Bose S; Hendler RW Biochemistry; 1999 Jul; 38(27):8786-93. PubMed ID: 10393554 [TBL] [Abstract][Full Text] [Related]
20. Inhomogeneous stability of bacteriorhodopsin in purple membrane against photobleaching at high temperature. Yokoyama Y; Sonoyama M; Mitaku S Proteins; 2004 Feb; 54(3):442-54. PubMed ID: 14747993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]