These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8550002)

  • 1. Metabolic studies on synchronized yeast cells in continuous culture.
    Boiteux A
    Folia Microbiol (Praha); 1994; 39(6):509-11. PubMed ID: 8550002
    [No Abstract]   [Full Text] [Related]  

  • 2. The fate of glucose in strains S288C and S173-6B of the yeast Saccharomyces cerevisiae.
    Pedler SM; Wallace PG; Wallace JC; Berry MN
    Yeast; 1997 Feb; 13(2):119-25. PubMed ID: 9046093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae.
    Martins AM; Cordeiro CA; Ponces Freire AM
    FEBS Lett; 2001 Jun; 499(1-2):41-4. PubMed ID: 11418108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic 13C-tracer study of storage carbohydrate pools in aerobic glucose-limited Saccharomyces cerevisiae confirms a rapid steady-state turnover and fast mobilization during a modest stepup in the glucose uptake rate.
    Aboka FO; Heijnen JJ; van Winden WA
    FEMS Yeast Res; 2009 Mar; 9(2):191-201. PubMed ID: 19220865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells.
    van Heerden JH; Wortel MT; Bruggeman FJ; Heijnen JJ; Bollen YJ; Planqué R; Hulshof J; O'Toole TG; Wahl SA; Teusink B
    Science; 2014 Feb; 343(6174):1245114. PubMed ID: 24436182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversal of glycolysis in yeast.
    Maitra PK; Lobo Z
    Arch Biochem Biophys; 1978 Jan; 185(2):535-43. PubMed ID: 204255
    [No Abstract]   [Full Text] [Related]  

  • 7. Expression of escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis.
    Bonini BM; Van Vaeck C; Larsson C; Gustafsson L; Ma P; Winderickx J; Van Dijck P; Thevelein JM
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):261-8. PubMed ID: 10926852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase.
    van Vaeck C; Wera S; van Dijck P; Thevelein JM
    Biochem J; 2001 Jan; 353(Pt 1):157-162. PubMed ID: 11115409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Gts1p in regulation of energy-metabolism oscillation in continuous cultures of the yeast Saccharomyces cerevisiae.
    Xu Z; Tsurugi K
    Yeast; 2007 Mar; 24(3):161-70. PubMed ID: 17351907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Characteristics of the aerobic growth of baker's yeast].
    Vitrinskaia AM; Rozmanova NV; Palagina NK; Khrycheva AI
    Mikrobiologiia; 1973; 42(2):274-9. PubMed ID: 4588891
    [No Abstract]   [Full Text] [Related]  

  • 11. The control of trehalose biosynthesis in Saccharomyces cerevisiae: evidence for a catabolite inactivation and repression of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase.
    François J; Neves MJ; Hers HG
    Yeast; 1991; 7(6):575-87. PubMed ID: 1662849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Germination of Saccharomyces cerevisiae ascospores without trehalose mobilization as revealed by in vivo 13C nuclear magnetic resonance spectroscopy.
    Donnini C; Puglisi PP; Vecli A; Marmiroli N
    J Bacteriol; 1988 Aug; 170(8):3789-91. PubMed ID: 3042762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanistic model of the aerobic growth of Saccharomyces cerevisiae.
    Bijkerk AH; Hall RJ
    Biotechnol Bioeng; 1977 Feb; 19(2):267-96. PubMed ID: 322740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular trehalose utilization by Saccharomyces cerevisiae.
    Basu A; Bhattacharyya S; Chaudhuri P; Sengupta S; Ghosh AK
    Biochim Biophys Acta; 2006 Feb; 1760(2):134-40. PubMed ID: 16410039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Gustafsson L
    Yeast; 2000 Jun; 16(9):797-809. PubMed ID: 10861904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolomics approach to reduce the Crabtree effect in continuous culture of Saccharomyces cerevisiae.
    Imura M; Iwakiri R; Bamba T; Fukusaki E
    J Biosci Bioeng; 2018 Aug; 126(2):183-188. PubMed ID: 29685822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect.
    Kajihata S; Matsuda F; Yoshimi M; Hayakawa K; Furusawa C; Kanda A; Shimizu H
    J Biosci Bioeng; 2015 Aug; 120(2):140-4. PubMed ID: 25634548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for trehalose-6-phosphate-dependent and -independent mechanisms in the control of sugar influx into yeast glycolysis.
    Hohmann S; Bell W; Neves MJ; Valckx D; Thevelein JM
    Mol Microbiol; 1996 Jun; 20(5):981-91. PubMed ID: 8809751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mevalonate synthesis in the mitochondria of yeast.
    Shimizu I; Nagai J; Hatanaka H; Katsuki H
    Biochim Biophys Acta; 1973 Feb; 296(2):310-20. PubMed ID: 4569545
    [No Abstract]   [Full Text] [Related]  

  • 20. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae.
    François J; Parrou JL
    FEMS Microbiol Rev; 2001 Jan; 25(1):125-45. PubMed ID: 11152943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.