BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8550004)

  • 1. Utilization of acetic acid and other short-chain monocarboxylic acids in the yeasts Torulaspora delbrueckii and Saccharomyces cerevisiae: transport and its regulation.
    Casal M; Leão C
    Folia Microbiol (Praha); 1994; 39(6):512-3. PubMed ID: 8550004
    [No Abstract]   [Full Text] [Related]  

  • 2. Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: specificity of the transport systems and their regulation.
    Casal M; Leão C
    Biochim Biophys Acta; 1995 Jun; 1267(2-3):122-30. PubMed ID: 7612664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae.
    Casal M; Cardoso H; Leao C
    Microbiology (Reading); 1996 Jun; 142 ( Pt 6)():1385-1390. PubMed ID: 8704978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae.
    Cássio F; Leão C; van Uden N
    Appl Environ Microbiol; 1987 Mar; 53(3):509-13. PubMed ID: 3034152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of C14 labeled propionate, lactate, and pyruvate to acetyl groups in the rat.
    SHREEVE WW
    J Biol Chem; 1952 Mar; 195(1):1-10. PubMed ID: 14938348
    [No Abstract]   [Full Text] [Related]  

  • 6. Utilization of C14 labeled pyruvate and acetate by yeast.
    WANG CH; LABBE RF; CHRISTENSEN BE; CHELDELIN VH
    J Biol Chem; 1952 May; 197(2):645-53. PubMed ID: 12981096
    [No Abstract]   [Full Text] [Related]  

  • 7. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids.
    Oldendorf WH
    Am J Physiol; 1973 Jun; 224(6):1450-3. PubMed ID: 4712154
    [No Abstract]   [Full Text] [Related]  

  • 8. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.
    Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D
    Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of acetate and pyruvate to glutamic acid in yeast.
    WANG CH; CHRISTENSEN BE; CHELDELIN VH
    J Biol Chem; 1953 Apr; 201(2):683-8. PubMed ID: 13061406
    [No Abstract]   [Full Text] [Related]  

  • 10. Conversion of acetate and pyruvate to aspartic acid in yeast.
    WANG CH; THOMAS RC; CHELDELIN VH; CHRISTENSEN BE
    J Biol Chem; 1952 May; 197(2):663-7. PubMed ID: 12981098
    [No Abstract]   [Full Text] [Related]  

  • 11. Chemical composition of bilberry wine fermented with non-Saccharomyces yeasts (Torulaspora delbrueckii and Schizosaccharomyces pombe) and Saccharomyces cerevisiae in pure, sequential and mixed fermentations.
    Liu S; Laaksonen O; Kortesniemi M; Kalpio M; Yang B
    Food Chem; 2018 Nov; 266():262-274. PubMed ID: 30381185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radioactive yeast fractions derived from C14 labeled pyruvate and acetate.
    LABBE RF; THOMAS RC; CHELDELIN VH; CHRISTENSEN BE; WANG CH
    J Biol Chem; 1952 May; 197(2):655-61. PubMed ID: 12981097
    [No Abstract]   [Full Text] [Related]  

  • 13. Linking gene expression and oenological traits: Comparison between Torulaspora delbrueckii and Saccharomyces cerevisiae strains.
    Tondini F; Lang T; Chen L; Herderich M; Jiranek V
    Int J Food Microbiol; 2019 Apr; 294():42-49. PubMed ID: 30763906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Problems in the use of benzoic acid for estimating the internal pH of yeasts.
    Henriques M; Quintas C; Loureiro-Dias MC
    Folia Microbiol (Praha); 1994; 39(6):520-1. PubMed ID: 8550010
    [No Abstract]   [Full Text] [Related]  

  • 15. The relative glucose uptake abilities of non-Saccharomyces yeasts play a role in their coexistence with Saccharomyces cerevisiae in mixed cultures.
    Nissen P; Nielsen D; Arneborg N
    Appl Microbiol Biotechnol; 2004 May; 64(4):543-50. PubMed ID: 14689245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactic acid utilization by the cutaneous Micrococcaceae.
    Smith RF
    Appl Microbiol; 1971 Apr; 21(4):777-9. PubMed ID: 4930285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of decreasing oxygen feed rates on growth and metabolism of Torulaspora delbrueckii.
    Hanl L; Sommer P; Arneborg N
    Appl Microbiol Biotechnol; 2005 Apr; 67(1):113-8. PubMed ID: 15290132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic fluxes regulate the success of sporulation in Saccharomyces cerevisiae.
    Aon JC; Rapisarda VA; Cortassa S
    Exp Cell Res; 1996 Jan; 222(1):157-62. PubMed ID: 8549658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The lactate metabolism of the oral bacterium Veillonella from human saliva.
    Distler W; Kröncke A
    Arch Oral Biol; 1981; 26(8):657-61. PubMed ID: 6947771
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of mixed Saccharomyces cerevisiae Y10 and Torulaspora delbrueckii Y22 on dough fermentation for steamed bread making.
    Li Z; Song K; Li H; Ma R; Cui M
    Int J Food Microbiol; 2019 Aug; 303():58-64. PubMed ID: 31136955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.