BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 8550006)

  • 1. Hexokinases and catabolite repression in Candida utilis.
    Espinel AE; Peinado JM
    Folia Microbiol (Praha); 1994; 39(6):515. PubMed ID: 8550006
    [No Abstract]   [Full Text] [Related]  

  • 2. The glycolytic function of hexokinases is not required for catabolite repression in Candida utilis.
    Espinel AE; Leyva JS; Gómez-Toribio V; Peinado JM
    Folia Microbiol (Praha); 1996; 41(1):88-9. PubMed ID: 9090832
    [No Abstract]   [Full Text] [Related]  

  • 3. The inactivation of hexokinase activity does not prevent glucose repression in Candida utilis.
    Espinel AE; Gómez-Toribio V; Peinado JM
    FEMS Microbiol Lett; 1996 Jan; 135(2-3):327-32. PubMed ID: 8595874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast.
    Entian KD
    Mol Gen Genet; 1980; 178(3):633-7. PubMed ID: 6993859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII.
    Rose M; Albig W; Entian KD
    Eur J Biochem; 1991 Aug; 199(3):511-8. PubMed ID: 1868842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolite repression-inactivation of malate dehydrogenase in Candida kefyr.
    Bhatia P; Singh B
    Indian J Exp Biol; 1981 Sep; 19(9):840-2. PubMed ID: 7309169
    [No Abstract]   [Full Text] [Related]  

  • 7. Structure-function analysis of yeast hexokinase: structural requirements for triggering cAMP signalling and catabolite repression.
    Kraakman LS; Winderickx J; Thevelein JM; De Winde JH
    Biochem J; 1999 Oct; 343 Pt 1(Pt 1):159-68. PubMed ID: 10493925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose-phosphorylating enzymes of Candida yeasts and their regulation in vivo.
    Hirai M; Ohtani E; Tanaka A; Fukui S
    Biochim Biophys Acta; 1977 Feb; 480(2):357-66. PubMed ID: 836848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Orthophosphoric acid monoester phosphohydrolase activity of the repressible inorganic pyrophosphate phosphohydrolase I from Candida utilis].
    Jungnickel F
    Z Allg Mikrobiol; 1972; 12(6):451-7. PubMed ID: 4346782
    [No Abstract]   [Full Text] [Related]  

  • 10. The regulation of glutamine metabolism in Candida utilis: the role of glutamine in the control of glutamine synthetase.
    Ferguson AR; Sims AP
    J Gen Microbiol; 1974 Jan; 80(1):159-71. PubMed ID: 4150659
    [No Abstract]   [Full Text] [Related]  

  • 11. The regulation of glutamine metabolism in Candida utilis: the inactivation of glutamine synthetase.
    Ferguson AR; Sims AP
    J Gen Microbiol; 1974 Jan; 80(1):173-85. PubMed ID: 4150660
    [No Abstract]   [Full Text] [Related]  

  • 12. Product-mediated regulation reveals the polymorphic nature of the yeast assimilatory nitrate reductase.
    Choudary PV
    Microbios; 1993; 74(298):53-7. PubMed ID: 8336554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The regulation of glutamine metabolism in Candida utilis: mechanisms of control of glutamine synthetase.
    Sims AP; Toone J; Box V
    J Gen Microbiol; 1974 Sep; 84(1):149-62. PubMed ID: 4154965
    [No Abstract]   [Full Text] [Related]  

  • 14. Protein structure and enzymatic activity. II. Purification and properties of a crystalline glucose-6-phosphate dehydrogenase from Candida utilis.
    Engel HJ; Domschke W; Alberti M; Domagk GF
    Biochim Biophys Acta; 1969; 191(3):509-16. PubMed ID: 5363983
    [No Abstract]   [Full Text] [Related]  

  • 15. Cloning, characterisation, and heterologous expression of the Candida utilis malic enzyme gene.
    Saayman M; van Zyl WH; Viljoen-Bloom M
    Curr Genet; 2006 Apr; 49(4):248-58. PubMed ID: 16437252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A carbon catabolite repression mutant of Saccharomyces cerevisiae with elevated hexokinase activity: evidence for regulatory control of hexokinase PII synthesis.
    Entian KD
    Mol Gen Genet; 1981; 184(2):278-82. PubMed ID: 7035837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of hexokinases I and II of ELD cells by binding to mitochondria.
    Okazaki H; Imai N; Nagamura H; Ishibashi S
    Biochem Int; 1989 Jan; 18(1):211-6. PubMed ID: 2719712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mutation Ser213/Asn in the hexokinase 1 from Schizosaccharomyces pombe increases its affinity for glucose.
    Petit T; Herrero P; Gancedo C
    Biochem Biophys Res Commun; 1998 Oct; 251(3):714-9. PubMed ID: 9790975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavin-linked mitochondrial alpha-glycerophosphate dehydrogenase of Candida utilis.
    Halsey YD
    Biochim Biophys Acta; 1982 Dec; 682(3):387-94. PubMed ID: 6817793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspartate kinase and homoserine dehydrogenase of Candida utilis.
    Benítez JA; Delgado JM; Herrera LS
    Folia Microbiol (Praha); 1983; 28(3):149-56. PubMed ID: 6307841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.