These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
478 related articles for article (PubMed ID: 8550404)
1. A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides. Qian Y; Tabita FR J Bacteriol; 1996 Jan; 178(1):12-8. PubMed ID: 8550404 [TBL] [Abstract][Full Text] [Related]
2. Isolation of regulatory mutants in photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 and partial complementation of a PrrB mutant by the HupT histidine-kinase. Gomelsky M; Kaplan S Microbiology (Reading); 1995 Aug; 141 ( Pt 8)():1805-1819. PubMed ID: 7551045 [TBL] [Abstract][Full Text] [Related]
3. Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth. Gibson JL; Dubbs JM; Tabita FR J Bacteriol; 2002 Dec; 184(23):6654-64. PubMed ID: 12426354 [TBL] [Abstract][Full Text] [Related]
4. Nucleotide sequence and functional analysis of cbbR, a positive regulator of the Calvin cycle operons of Rhodobacter sphaeroides. Gibson JL; Tabita FR J Bacteriol; 1993 Sep; 175(18):5778-84. PubMed ID: 8376325 [TBL] [Abstract][Full Text] [Related]
5. Structural and functional analyses of photosynthetic regulatory genes regA and regB from Rhodovulum sulfidophilum, Roseobacter denitrificans, and Rhodobacter capsulatus. Masuda S; Matsumoto Y; Nagashima KV; Shimada K; Inoue K; Bauer CE; Matsuura K J Bacteriol; 1999 Jul; 181(14):4205-15. PubMed ID: 10400577 [TBL] [Abstract][Full Text] [Related]
6. Positive and negative regulation of sequences upstream of the form II cbb CO2 fixation operon of Rhodobacter sphaeroides. Xu HH; Tabita FR J Bacteriol; 1994 Dec; 176(23):7299-308. PubMed ID: 7961502 [TBL] [Abstract][Full Text] [Related]
7. Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. Eraso JM; Kaplan S J Bacteriol; 1995 May; 177(10):2695-706. PubMed ID: 7751278 [TBL] [Abstract][Full Text] [Related]
8. Identification and molecular genetic characterization of a sensor kinase responsible for coordinately regulating light harvesting and reaction center gene expression in response to anaerobiosis. Mosley CS; Suzuki JY; Bauer CE J Bacteriol; 1994 Dec; 176(24):7566-73. PubMed ID: 8002581 [TBL] [Abstract][Full Text] [Related]
9. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum. Falcone DL; Tabita FR J Bacteriol; 1993 Aug; 175(16):5066-77. PubMed ID: 8349547 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the fnrL gene and its function in Rhodobacter capsulatus. Zeilstra-Ryalls JH; Gabbert K; Mouncey NJ; Kaplan S; Kranz RG J Bacteriol; 1997 Dec; 179(23):7264-73. PubMed ID: 9393689 [TBL] [Abstract][Full Text] [Related]
11. Aerobic chemolithoautotrophic growth and RubisCO function in Rhodobacter capsulatus and a spontaneous gain of function mutant of Rhodobacter sphaeroides. Paoli GC; Tabita FR Arch Microbiol; 1998 Jul; 170(1):8-17. PubMed ID: 9639598 [TBL] [Abstract][Full Text] [Related]
12. appA, a novel gene encoding a trans-acting factor involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. Gomelsky M; Kaplan S J Bacteriol; 1995 Aug; 177(16):4609-18. PubMed ID: 7642486 [TBL] [Abstract][Full Text] [Related]
13. Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1. O'Gara JP; Kaplan S J Bacteriol; 1997 Mar; 179(6):1951-61. PubMed ID: 9068641 [TBL] [Abstract][Full Text] [Related]
14. Cloning and nucleotide sequence of regA, a putative response regulator gene of Rhodobacter sphaeroides. Phillips-Jones MK; Hunter CN FEMS Microbiol Lett; 1994 Mar; 116(3):269-75. PubMed ID: 8181698 [TBL] [Abstract][Full Text] [Related]
15. Multiple regulators and their interactions in vivo and in vitro with the cbb regulons of Rhodobacter capsulatus. Vichivanives P; Bird TH; Bauer CE; Robert Tabita F J Mol Biol; 2000 Jul; 300(5):1079-99. PubMed ID: 10903856 [TBL] [Abstract][Full Text] [Related]
16. mgpS, a complex regulatory locus involved in the transcriptional control of the puc and puf operons in Rhodobacter sphaeroides 2.4.1. Sabaty M; Kaplan S J Bacteriol; 1996 Jan; 178(1):35-45. PubMed ID: 8550440 [TBL] [Abstract][Full Text] [Related]
17. Expression of endogenous and foreign ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) genes in a RubisCO deletion mutant of Rhodobacter sphaeroides. Falcone DL; Tabita FR J Bacteriol; 1991 Mar; 173(6):2099-108. PubMed ID: 1900508 [TBL] [Abstract][Full Text] [Related]
18. A redox-responsive pathway for aerobic regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. O'Gara JP; Eraso JM; Kaplan S J Bacteriol; 1998 Aug; 180(16):4044-50. PubMed ID: 9696749 [TBL] [Abstract][Full Text] [Related]
19. Phosphoribulokinase activity and regulation of CO2 fixation critical for photosynthetic growth of Rhodobacter sphaeroides. Hallenbeck PL; Lerchen R; Hessler P; Kaplan S J Bacteriol; 1990 Apr; 172(4):1749-61. PubMed ID: 2156801 [TBL] [Abstract][Full Text] [Related]
20. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state. Zeilstra-Ryalls JH; Kaplan S J Bacteriol; 1996 Feb; 178(4):985-93. PubMed ID: 8576072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]