These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 8550443)

  • 1. Reduced sulfur compound oxidation by Thiobacillus caldus.
    Hallberg KB; Dopson M; Lindström EB
    J Bacteriol; 1996 Jan; 178(1):6-11. PubMed ID: 8550443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of oxidation of inorganic sulfur compounds by thiosulfate-grown Thiobacillus thiooxidans.
    Masau RJ; Oh JK; Suzuki I
    Can J Microbiol; 2001 Apr; 47(4):348-58. PubMed ID: 11358175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EFFECT OF THIOL-BINDING REAGENTS ON THE METABOLISM OF THIOSULFATE AND TETRATHIONATE BY THIOBACILLUS NEAPOLITANUS.
    TRUDINGER PA
    J Bacteriol; 1965 Mar; 89(3):617-25. PubMed ID: 14273636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and energetics of reduced sulfur oxidation by chemostat cultures of Thiobacillus ferrooxidans.
    Hazeu W; Bijleveld W; Grotenhuis JT; Kakes E; Kuenen JG
    Antonie Van Leeuwenhoek; 1986; 52(6):507-18. PubMed ID: 3813523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulfate and elemental sulfur.
    Frederiksen TM; Finster K
    Biodegradation; 2003 Jun; 14(3):189-98. PubMed ID: 12889609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of inhibitors and NaCl on the oxidation of reduced inorganic sulfur compounds by a marine acidophilic, sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH.
    Kamimura K; Higashino E; Kanao T; Sugio T
    Extremophiles; 2005 Feb; 9(1):45-51. PubMed ID: 15375674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanism of sulfur chemolithotrophy in the betaproteobacterium
    Mandal S; Rameez MJ; Chatterjee S; Sarkar J; Pyne P; Bhattacharya S; Shaw R; Ghosh W
    Microbiology (Reading); 2020 Apr; 166(4):386-397. PubMed ID: 31999239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative metabolism of inorganic sulfur compounds by bacteria.
    Kelly DP; Shergill JK; Lu WP; Wood AP
    Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):95-107. PubMed ID: 9049021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiosulfate oxidation by Thiomicrospira thermophila: metabolic flexibility in response to ambient geochemistry.
    Houghton JL; Foustoukos DI; Flynn TM; Vetriani C; Bradley AS; Fike DA
    Environ Microbiol; 2016 Sep; 18(9):3057-72. PubMed ID: 26914243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rates of iron(III) reduction coupled to elemental sulfur or tetrathionate oxidation by acidophilic microorganisms and detection of sulfur intermediates.
    Breuker A; Schippers A
    Res Microbiol; 2024; 175(1-2):104110. PubMed ID: 37544391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The S4-intermediate pathway for the oxidation of thiosulfate by the chemolithoautotroph Tetrathiobacter kashmirensis and inhibition of tetrathionate oxidation by sulfite.
    Dam B; Mandal S; Ghosh W; Das Gupta SK; Roy P
    Res Microbiol; 2007 May; 158(4):330-8. PubMed ID: 17509837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy conservation in Thiobacillus neapolitanus C6 sulphide and sulphite oxidation.
    Drozd JW
    J Gen Microbiol; 1977 Jan; 98(1):309-12. PubMed ID: 188974
    [No Abstract]   [Full Text] [Related]  

  • 13. Dissimilatory reduction of inorganic sulfur by facultatively anaerobic marine bacteria.
    Tuttle JH; Jannasch HW
    J Bacteriol; 1973 Sep; 115(3):732-7. PubMed ID: 4728269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP generation during reduced inorganic sulfur compound oxidation by Acidithiobacillus caldus is exclusively due to electron transport phosphorylation.
    Dopson M; Lindström EB; Hallberg KB
    Extremophiles; 2002 Apr; 6(2):123-9. PubMed ID: 12013432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of hydrogen sulfide from tetrathionate by the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1.
    Ng KY; Kamimura K; Sugio T
    J Biosci Bioeng; 2000; 90(2):193-8. PubMed ID: 16232841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST.
    Rameez MJ; Pyne P; Mandal S; Chatterjee S; Alam M; Bhattacharya S; Mondal N; Sarkar J; Ghosh W
    Microbiol Res; 2020 Jan; 230():126345. PubMed ID: 31585234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiosulfate Oxidation and mixotrophic growth of Methylobacterium goesingense and Methylobacterium fujisawaense.
    Anandham R; Indiragandhi P; Madhaiyan M; Chung J; Ryu KY; Jee HJ; Sa T
    J Microbiol Biotechnol; 2009 Jan; 19(1):17-22. PubMed ID: 19190404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of cultivation conditions on the growth and activities of sulfur metabolism enzymes and carboxylases of Sulfobacillus thermosulfidooxidans subsp. asporogenes strain 41].
    Egorova MA; Tsaplina IA; Zakharchuk LM; Bogdanova TI; Krasil'nikova EN
    Prikl Biokhim Mikrobiol; 2004; 40(4):448-54. PubMed ID: 15455718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen transfer and consumption in a thiosulfate oxidizing bioreactor with sulfur production.
    González-Sánchez A; Alcántara S; Razo-Flores E; Revah S
    Lett Appl Microbiol; 2005; 41(2):141-6. PubMed ID: 16033511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate.
    Eccleston M; Kelly DP
    J Bacteriol; 1978 Jun; 134(3):718-27. PubMed ID: 26665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.