These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
640 related articles for article (PubMed ID: 8550467)
1. Transcriptional regulation of the sucrase gene of Staphylococcus xylosus by the repressor ScrR. Gering M; Brückner R J Bacteriol; 1996 Jan; 178(2):462-9. PubMed ID: 8550467 [TBL] [Abstract][Full Text] [Related]
2. Control of enzyme IIscr and sucrose-6-phosphate hydrolase activities in Streptococcus mutans by transcriptional repressor ScrR binding to the cis-active determinants of the scr regulon. Wang B; Kuramitsu HK J Bacteriol; 2003 Oct; 185(19):5791-9. PubMed ID: 13129950 [TBL] [Abstract][Full Text] [Related]
3. Regulation of sucrose-6-phosphate hydrolase activity in Streptococcus mutans: characterization of the scrR gene. Hiratsuka K; Wang B; Sato Y; Kuramitsu H Infect Immun; 1998 Aug; 66(8):3736-43. PubMed ID: 9673256 [TBL] [Abstract][Full Text] [Related]
4. The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon. Reid SJ; Rafudeen MS; Leat NG Microbiology (Reading); 1999 Jun; 145 ( Pt 6)():1461-1472. PubMed ID: 10411273 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a genetic locus essential for maltose-maltotriose utilization in Staphylococcus xylosus. Egeter O; Brückner R J Bacteriol; 1995 May; 177(9):2408-15. PubMed ID: 7730272 [TBL] [Abstract][Full Text] [Related]
6. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization. Jankovic I; Brückner R J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a sucrase gene from Staphylococcus xylosus. Brückner R; Wagner E; Götz F J Bacteriol; 1993 Feb; 175(3):851-7. PubMed ID: 8423155 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the major promoter for the plasmid-encoded sucrose genes scrY, scrA, and scrB. Cowan PJ; Nagesha H; Leonard L; Howard JL; Pittard AJ J Bacteriol; 1991 Dec; 173(23):7464-70. PubMed ID: 1938944 [TBL] [Abstract][Full Text] [Related]
9. Molecular analysis of sucrose metabolism of Erwinia amylovora and influence on bacterial virulence. Bogs J; Geider K J Bacteriol; 2000 Oct; 182(19):5351-8. PubMed ID: 10986236 [TBL] [Abstract][Full Text] [Related]
10. Molecular analysis of two ScrR repressors and of a ScrR-FruR hybrid repressor for sucrose and D-fructose specific regulons from enteric bacteria. Jahreis K; Lengeler JW Mol Microbiol; 1993 Jul; 9(1):195-209. PubMed ID: 8412665 [TBL] [Abstract][Full Text] [Related]
11. Molecular analysis of the scrA and scrB genes from Klebsiella pneumoniae and plasmid pUR400, which encode the sucrose transport protein Enzyme II Scr of the phosphotransferase system and a sucrose-6-phosphate invertase. Titgemeyer F; Jahreis K; Ebner R; Lengeler JW Mol Gen Genet; 1996 Feb; 250(2):197-206. PubMed ID: 8628219 [TBL] [Abstract][Full Text] [Related]
12. Sequence analysis of scrA and scrB from Streptococcus sobrinus 6715. Chen YY; Lee LN; LeBlanc DJ Infect Immun; 1993 Jun; 61(6):2602-10. PubMed ID: 8500898 [TBL] [Abstract][Full Text] [Related]
13. Cloning and characterization of the scrA gene encoding the sucrose-specific Enzyme II of the phosphotransferase system from Staphylococcus xylosus. Wagner E; Götz F; Brückner R Mol Gen Genet; 1993 Oct; 241(1-2):33-41. PubMed ID: 8232209 [TBL] [Abstract][Full Text] [Related]
14. MalI, a novel protein involved in regulation of the maltose system of Escherichia coli, is highly homologous to the repressor proteins GalR, CytR, and LacI. Reidl J; Römisch K; Ehrmann M; Boos W J Bacteriol; 1989 Sep; 171(9):4888-99. PubMed ID: 2670898 [TBL] [Abstract][Full Text] [Related]
15. Induction of sucrose utilization genes from Bifidobacterium lactis by sucrose and raffinose. Trindade MI; Abratt VR; Reid SJ Appl Environ Microbiol; 2003 Jan; 69(1):24-32. PubMed ID: 12513973 [TBL] [Abstract][Full Text] [Related]
16. Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400. Schmid K; Ebner R; Altenbuchner J; Schmitt R; Lengeler JW Mol Microbiol; 1988 Jan; 2(1):1-8. PubMed ID: 2835584 [TBL] [Abstract][Full Text] [Related]
17. Catabolite repression mediated by the catabolite control protein CcpA in Staphylococcus xylosus. Egeter O; Brückner R Mol Microbiol; 1996 Aug; 21(4):739-49. PubMed ID: 8878037 [TBL] [Abstract][Full Text] [Related]
18. Genetic analysis of scrA and scrB from Streptococcus sobrinus 6715. Chen YY; LeBlanc DJ Infect Immun; 1992 Sep; 60(9):3739-46. PubMed ID: 1500184 [TBL] [Abstract][Full Text] [Related]
19. Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization. Sá-Nogueira I; Ramos SS J Bacteriol; 1997 Dec; 179(24):7705-11. PubMed ID: 9401028 [TBL] [Abstract][Full Text] [Related]
20. Molecular characterization of a fructanase produced by Bacteroides fragilis BF-1. Blatch GL; Woods DR J Bacteriol; 1993 May; 175(10):3058-66. PubMed ID: 8491724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]