BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 8550519)

  • 21. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch.
    Cotta MA
    Appl Environ Microbiol; 1992 Jan; 58(1):48-54. PubMed ID: 1539992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic Variation of the SusC/SusD Homologs from a Polysaccharide Utilization Locus Underlies Divergent Fructan Specificities and Functional Adaptation in
    Joglekar P; Sonnenburg ED; Higginbottom SK; Earle KA; Morland C; Shapiro-Ward S; Bolam DN; Sonnenburg JL
    mSphere; 2018; 3(3):. PubMed ID: 29794055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface Exposure and Packing of Lipoproteins into Outer Membrane Vesicles Are Coupled Processes in
    Valguarnera E; Scott NE; Azimzadeh P; Feldman MF
    mSphere; 2018 Nov; 3(6):. PubMed ID: 30404931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Outer membrane proteins related to SusC and SusD are not required for Cytophaga hutchinsonii cellulose utilization.
    Zhu Y; Kwiatkowski KJ; Yang T; Kharade SS; Bahr CM; Koropatkin NM; Liu W; McBride MJ
    Appl Microbiol Biotechnol; 2015 Aug; 99(15):6339-50. PubMed ID: 25846333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the primary starch utilization operon in the obligate anaerobe Bacteroides fragilis: Regulation by carbon source and oxygen.
    Spence C; Wells WG; Smith CJ
    J Bacteriol; 2006 Jul; 188(13):4663-72. PubMed ID: 16788175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of targeted insertional mutagenesis to determine whether chondroitin lyase II is essential for chondroitin sulfate utilization by Bacteroides thetaiotaomicron.
    Guthrie EP; Salyers AA
    J Bacteriol; 1986 Jun; 166(3):966-71. PubMed ID: 3011755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multidomain Carbohydrate-binding Proteins Involved in Bacteroides thetaiotaomicron Starch Metabolism.
    Cameron EA; Maynard MA; Smith CJ; Smith TJ; Koropatkin NM; Martens EC
    J Biol Chem; 2012 Oct; 287(41):34614-25. PubMed ID: 22910908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SusG: a unique cell-membrane-associated alpha-amylase from a prominent human gut symbiont targets complex starch molecules.
    Koropatkin NM; Smith TJ
    Structure; 2010 Feb; 18(2):200-15. PubMed ID: 20159465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices.
    Koropatkin NM; Martens EC; Gordon JI; Smith TJ
    Structure; 2008 Jul; 16(7):1105-15. PubMed ID: 18611383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Primary sequence of the Escherichia coli fadL gene encoding an outer membrane protein required for long-chain fatty acid transport.
    Black PN
    J Bacteriol; 1991 Jan; 173(2):435-42. PubMed ID: 1987139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the Vibrio cholerae outer membrane heme transport protein HutA: sequence of the gene, regulation of expression, and homology to the family of TonB-dependent proteins.
    Henderson DP; Payne SM
    J Bacteriol; 1994 Jun; 176(11):3269-77. PubMed ID: 8195082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and Biochemical Characterization of a Nonbinding SusD-Like Protein Involved in Xylooligosaccharide Utilization by an Uncultured Human Gut
    Tauzin AS; Wang Z; Cioci G; Li X; Labourel A; Machado B; Lippens G; Potocki-Veronese G
    mSphere; 2022 Oct; 7(5):e0024422. PubMed ID: 36043703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sus out sugars in.
    Gilbert HJ
    Structure; 2008 Jul; 16(7):987-9. PubMed ID: 18611370
    [No Abstract]   [Full Text] [Related]  

  • 34. Analysis of Two SusE-Like Enzymes From
    Stevenson J; Ngo M; Brandt A; Weadge JT; Suits MDL
    Front Microbiol; 2021; 12():645765. PubMed ID: 34149636
    [No Abstract]   [Full Text] [Related]  

  • 35. Cloning and sequencing of a gene encoding a 21-kilodalton outer membrane protein from Bordetella avium and expression of the gene in Salmonella typhimurium.
    Gentry-Weeks CR; Hultsch AL; Kelly SM; Keith JM; Curtiss R
    J Bacteriol; 1992 Dec; 174(23):7729-42. PubMed ID: 1447140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facilitated diffusion of p-nitrophenyl-alpha-D-maltohexaoside through the outer membrane of Escherichia coli. Characterization of LamB as a specific and saturable channel for maltooligosaccharides.
    Freundlieb S; Ehmann U; Boos W
    J Biol Chem; 1988 Jan; 263(1):314-20. PubMed ID: 3275641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Permissive linker insertion sites in the outer membrane protein of 987P fimbriae of Escherichia coli.
    Schifferli DM; Alrutz MA
    J Bacteriol; 1994 Feb; 176(4):1099-110. PubMed ID: 7906265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transmembrane transcriptional control (surface signalling) of the Escherichia coli Fec type.
    Braun V; Mahren S
    FEMS Microbiol Rev; 2005 Sep; 29(4):673-84. PubMed ID: 16102597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Need for TolC, an Escherichia coli outer membrane protein, in the secretion of heat-stable enterotoxin I across the outer membrane.
    Yamanaka H; Nomura T; Fujii Y; Okamoto K
    Microb Pathog; 1998 Sep; 25(3):111-20. PubMed ID: 9790870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus.
    Neugebauer H; Herrmann C; Kammer W; Schwarz G; Nordheim A; Braun V
    J Bacteriol; 2005 Dec; 187(24):8300-11. PubMed ID: 16321934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.