These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 8550556)
1. Is protein kinase substrate efficacy a reliable barometer for successful inhibitor design? Werner DS; Lee TR; Lawrence DS J Biol Chem; 1996 Jan; 271(1):180-5. PubMed ID: 8550556 [TBL] [Abstract][Full Text] [Related]
2. Rate-determining steps for tyrosine phosphorylation by the kinase domain of v-fps. Wang C; Lee TR; Lawrence DS; Adams JA Biochemistry; 1996 Feb; 35(5):1533-9. PubMed ID: 8634284 [TBL] [Abstract][Full Text] [Related]
3. The active site substrate specificity of the cAMP-dependent protein kinase. Kwon YG; Mendelow M; Srinivasan J; Lee TR; Pluskey S; Salerno A; Lawrence DS J Biol Chem; 1993 May; 268(15):10713-6. PubMed ID: 8496138 [TBL] [Abstract][Full Text] [Related]
4. Multiple arginine residues contribute to the increased efficacy of peptide substrates for the cAMP-dependent protein kinase. Prorok M; Lawrence DS Biochem Biophys Res Commun; 1989 Nov; 165(1):368-71. PubMed ID: 2590233 [TBL] [Abstract][Full Text] [Related]
5. Further definition of the substrate specificity of the alpha-herpesvirus protein kinase and comparison with protein kinases A and C. Leader DP; Deana AD; Marchiori F; Purves FC; Pinna LA Biochim Biophys Acta; 1991 Feb; 1091(3):426-31. PubMed ID: 1848111 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for the low affinities of yeast cAMP-dependent and mammalian cGMP-dependent protein kinases for protein kinase inhibitor peptides. Glass DB; Feller MJ; Levin LR; Walsh DA Biochemistry; 1992 Feb; 31(6):1728-34. PubMed ID: 1310617 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the catalytic mechanism of the p21-activated protein kinase PAK2. Wu H; Zheng Y; Wang ZX Biochemistry; 2003 Feb; 42(4):1129-39. PubMed ID: 12549935 [TBL] [Abstract][Full Text] [Related]
8. The use of synthetic peptides for defining the specificity of tyrosine protein kinases. Casnellie JE; Krebs EG Adv Enzyme Regul; 1984; 22():501-15. PubMed ID: 6540972 [TBL] [Abstract][Full Text] [Related]
9. Energetic limits of phosphotransfer in the catalytic subunit of cAMP-dependent protein kinase as measured by viscosity experiments. Adams JA; Taylor SS Biochemistry; 1992 Sep; 31(36):8516-22. PubMed ID: 1390637 [TBL] [Abstract][Full Text] [Related]
10. The extraordinary active site substrate specificity of pp60c-src. A multiple specificity protein kinase. Lee TR; Niu J; Lawrence DS J Biol Chem; 1995 Mar; 270(10):5375-80. PubMed ID: 7534295 [TBL] [Abstract][Full Text] [Related]
11. Synthetic peptides corresponding to the site phosphorylated in 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as substrates of cyclic nucleotide-dependent protein kinases. Glass DB; el-Maghrabi MR; Pilkis SJ J Biol Chem; 1986 Feb; 261(6):2987-93. PubMed ID: 3005275 [TBL] [Abstract][Full Text] [Related]
12. Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase II. Girault JA; Hemmings HC; Williams KR; Nairn AC; Greengard P J Biol Chem; 1989 Dec; 264(36):21748-59. PubMed ID: 2557337 [TBL] [Abstract][Full Text] [Related]
13. Substrate specificity and stereoselectivity of horse liver alcohol dehydrogenase. Kinetic evaluation of binding and activation parameters controlling the catalytic cycles of unbranched, acyclic secondary alcohols and ketones as substrates of the native and active-site-specific Co(II)-substituted enzyme. Adolph HW; Maurer P; Schneider-Bernlöhr H; Sartorius C; Zeppezauer M Eur J Biochem; 1991 Nov; 201(3):615-25. PubMed ID: 1935957 [TBL] [Abstract][Full Text] [Related]
14. Synthetic peptide analogs of DARPP-32 (Mr 32,000 dopamine- and cAMP-regulated phosphoprotein), an inhibitor of protein phosphatase-1. Phosphorylation, dephosphorylation, and inhibitory activity. Hemmings HC; Nairn AC; Elliott JI; Greengard P J Biol Chem; 1990 Nov; 265(33):20369-76. PubMed ID: 2173704 [TBL] [Abstract][Full Text] [Related]
15. Insight into tyrosine phosphorylation in v-Fps using proton inventory techniques. Adams JA Biochemistry; 1996 Aug; 35(33):10949-56. PubMed ID: 8718888 [TBL] [Abstract][Full Text] [Related]
16. Substrate specificity determinants for casein kinase II as deduced from studies with synthetic peptides. Kuenzel EA; Mulligan JA; Sommercorn J; Krebs EG J Biol Chem; 1987 Jul; 262(19):9136-40. PubMed ID: 3474230 [TBL] [Abstract][Full Text] [Related]
17. Mechanistic studies of cAMP-dependent protein kinase action. Bramson HN; Kaiser ET; Mildvan AS CRC Crit Rev Biochem; 1984; 15(2):93-124. PubMed ID: 6365450 [TBL] [Abstract][Full Text] [Related]
18. Enzymic and structural studies on Drosophila alcohol dehydrogenase and other short-chain dehydrogenases/reductases. Smilda T; Kamminga AH; Reinders P; Baron W; van Hylckama Vlieg JE; Beintema JJ J Mol Evol; 2001 May; 52(5):457-66. PubMed ID: 11443349 [TBL] [Abstract][Full Text] [Related]
19. Kinetic and calcium-binding properties of three calcium-dependent protein kinase isoenzymes from soybean. Lee JY; Yoo BC; Harmon AC Biochemistry; 1998 May; 37(19):6801-9. PubMed ID: 9578565 [TBL] [Abstract][Full Text] [Related]
20. Kinetic mechanism of the p38-alpha MAP kinase: phosphoryl transfer to synthetic peptides. Chen G; Porter MD; Bristol JR; Fitzgibbon MJ; Pazhanisamy S Biochemistry; 2000 Feb; 39(8):2079-87. PubMed ID: 10684658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]