These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 8550556)
21. Precision substrate targeting of protein kinases v-Abl and c-Src. Lee TR; Till JH; Lawrence DS; Miller WT J Biol Chem; 1995 Nov; 270(45):27022-6. PubMed ID: 7592951 [TBL] [Abstract][Full Text] [Related]
22. Differential and common recognition of the catalytic sites of the cGMP-dependent and cAMP-dependent protein kinases by inhibitory peptides derived from the heat-stable inhibitor protein. Glass DB; Cheng HC; Kemp BE; Walsh DA J Biol Chem; 1986 Sep; 261(26):12166-71. PubMed ID: 3017964 [TBL] [Abstract][Full Text] [Related]
23. Heat-stable inhibitor protein derived peptide substrate analogs: phosphorylation by cAMP-dependent and cGMP-dependent protein kinases. Mitchell RD; Glass DB; Wong CW; Angelos KL; Walsh DA Biochemistry; 1995 Jan; 34(2):528-34. PubMed ID: 7819246 [TBL] [Abstract][Full Text] [Related]
24. Sequence similarities of protein kinase peptide substrates and inhibitors: comparison of their primary structures with immunoglobulin repeats. Kubrycht J; Borecký J; Sigler K Folia Microbiol (Praha); 2002; 47(4):319-58. PubMed ID: 12422509 [TBL] [Abstract][Full Text] [Related]
25. The use of N-methylated peptides and depsipeptides to probe the binding of heptapeptide substrates to cAMP-dependent protein kinase. Bramson HN; Thomas NE; Kaiser ET J Biol Chem; 1985 Dec; 260(29):15452-7. PubMed ID: 4066678 [TBL] [Abstract][Full Text] [Related]
26. Studies on the substrate specificity of cAMP-dependent protein kinase using diastereomeric peptides. Eller M; Sepp A; Toomik R; Ekman P; Järv J; Ragnarsson U; Engström L Biochem Int; 1991 Oct; 25(3):453-60. PubMed ID: 1805790 [TBL] [Abstract][Full Text] [Related]
27. Identification of electrostatic interactions that determine the phosphorylation site specificity of the cAMP-dependent protein kinase. Gibbs CS; Zoller MJ Biochemistry; 1991 Jun; 30(22):5329-34. PubMed ID: 2036400 [TBL] [Abstract][Full Text] [Related]
28. Pre-steady-state kinetic analysis of cAMP-dependent protein kinase using rapid quench flow techniques. Grant BD; Adams JA Biochemistry; 1996 Feb; 35(6):2022-9. PubMed ID: 8639687 [TBL] [Abstract][Full Text] [Related]
29. Optimal spatial requirements for the location of basic residues in peptide substrates for the cyclic AMP-dependent protein kinase. Feramisco JR; Glass DB; Krebs EG J Biol Chem; 1980 May; 255(9):4240-5. PubMed ID: 6246116 [TBL] [Abstract][Full Text] [Related]
30. Kinetic mechanism of the type II calmodulin-dependent protein kinase: studies of the forward and reverse reactions and observation of apparent rapid-equilibrium ordered binding. Kwiatkowski AP; Huang CY; King MM Biochemistry; 1990 Jan; 29(1):153-9. PubMed ID: 2157478 [TBL] [Abstract][Full Text] [Related]
31. Kinetic analysis of cAMP-dependent protein kinase: mutations at histidine 87 affect peptide binding and pH dependence. Cox S; Taylor SS Biochemistry; 1995 Dec; 34(49):16203-9. PubMed ID: 8519778 [TBL] [Abstract][Full Text] [Related]
32. A protonated histidine residue in a phosphorylation site for cyclic AMP-dependent protein kinase. Comparison of a synthetic peptide with the exposed linking region in the multienzyme polypeptide CAD. Carrey EA Biochem J; 1992 Nov; 287 ( Pt 3)(Pt 3):791-5. PubMed ID: 1359877 [TBL] [Abstract][Full Text] [Related]
33. Activation loop phosphorylation and catalysis in protein kinases: is there functional evidence for the autoinhibitor model? Adams JA Biochemistry; 2003 Jan; 42(3):601-7. PubMed ID: 12534271 [TBL] [Abstract][Full Text] [Related]
34. A phenylalanine in peptide substrates provides for selectivity between cGMP- and cAMP-dependent protein kinases. Colbran JL; Francis SH; Leach AB; Thomas MK; Jiang H; McAllister LM; Corbin JD J Biol Chem; 1992 May; 267(14):9589-94. PubMed ID: 1315760 [TBL] [Abstract][Full Text] [Related]
35. Phosphorylation and functional modification of calmodulin-dependent protein kinase IV by cAMP-dependent protein kinase. Kameshita I; Fujisawa H Biochem Biophys Res Commun; 1991 Oct; 180(1):191-6. PubMed ID: 1930216 [TBL] [Abstract][Full Text] [Related]
36. The substrate specificity of protein kinases which phosphorylate the alpha subunit of eukaryotic initiation factor 2. Proud CG; Colthurst DR; Ferrari S; Pinna LA Eur J Biochem; 1991 Feb; 195(3):771-9. PubMed ID: 1671834 [TBL] [Abstract][Full Text] [Related]
37. VHR and PTP1 protein phosphatases exhibit remarkably different active site specificities toward low molecular weight nonpeptidic substrates. Chen L; Montserat J; Lawrence DS; Zhang ZY Biochemistry; 1996 Jul; 35(29):9349-54. PubMed ID: 8755712 [TBL] [Abstract][Full Text] [Related]
38. Effect of two simultaneous aza-β3-amino acid substitutions on recognition of peptide substrates by cAMP dependent protein kinase catalytic subunit. Kisseljova K; Kuznetsov A; Baudy-Floc'h M; Järv J Bioorg Chem; 2011 Aug; 39(4):133-7. PubMed ID: 21683975 [TBL] [Abstract][Full Text] [Related]
39. Comparison of substrate specificity of myosin kinase and cyclic AMP-dependent protein kinase. Pearson RB; Forrest S; Davis M; Martin TJ; Kemp BE Biochim Biophys Acta; 1984 May; 786(3):261-6. PubMed ID: 6547060 [TBL] [Abstract][Full Text] [Related]
40. Site specificity of casein kinase-2 (TS) from rat liver cytosol. A study with model peptide substrates. Marin O; Meggio F; Marchiori F; Borin G; Pinna LA Eur J Biochem; 1986 Oct; 160(2):239-44. PubMed ID: 3464423 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]