BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8550575)

  • 1. Substitutions of proline 42 to alanine and methionine 46 to asparagine around the RGD domain of the neurotoxin dendroaspin alter its preferential antagonism to that resembling the disintegrin elegantin.
    Lu X; Rahman S; Kakkar VV; Authi KS
    J Biol Chem; 1996 Jan; 271(1):289-94. PubMed ID: 8550575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The integrin alpha IIb beta 3 contains distinct and interacting binding sites for snake-venom RGD (Arg-Gly-Asp) proteins. Evidence that the receptor-binding characteristics of snake-venom RGD proteins are related to the amino acid environment flanking the sequence RGD.
    Rahman S; Lu X; Kakkar VV; Authi KS
    Biochem J; 1995 Nov; 312 ( Pt 1)(Pt 1):223-32. PubMed ID: 7492316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of RGD sequence motifs regulates disintegrin recognition of alphaIIb beta3 and alpha5 beta1 integrin complexes. Replacement of elegantin alanine-50 with proline, N-terminal to the RGD sequence, diminishes recognition of the alpha5 beta1 complex with restoration induced by Mn2+ cation.
    Rahman S; Aitken A; Flynn G; Formstone C; Savidge GF
    Biochem J; 1998 Oct; 335 ( Pt 2)(Pt 2):247-57. PubMed ID: 9761721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential recognition of snake venom proteins expressing specific Arg-Gly-Asp (RGD) sequence motifs by wild-type and variant integrin alphaIIbbeta3: further evidence for distinct sites of RGD ligand recognition exhibiting negative allostery.
    Rahman S; Flynn G; Aitken A; Patel Y; Hussain F; Lu X; Loftus JC; French D; Wijelath E; Strand K; Savidge GF
    Biochem J; 2000 Feb; 345 Pt 3(Pt 3):701-9. PubMed ID: 10642531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential antagonism of the interactions of the integrin alpha IIb beta 3 with immobilized glycoprotein ligands by snake-venom RGD (Arg-Gly-Asp) proteins. Evidence supporting a functional role for the amino acid residues flanking the tripeptide RGD in determining the inhibitory properties of snake-venom RGD proteins.
    Lu X; Williams JA; Deadman JJ; Salmon GP; Kakkar VV; Wilkinson JM; Baruch D; Authi KS; Rahman S
    Biochem J; 1994 Dec; 304 ( Pt 3)(Pt 3):929-36. PubMed ID: 7529494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the role of proline residues flanking the RGD motif of dendroaspin, an inhibitior of platelet aggregation and cell adhesion.
    Lu X; Sun Y; Shang D; Wattam B; Egglezou S; Hughes T; Hyde E; Scully M; Kakkar V
    Biochem J; 2001 May; 355(Pt 3):633-8. PubMed ID: 11311124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arg-Tyr-Asp (RYD) and Arg-Cys-Asp (RCD) motifs in dendroaspin promote selective inhibition of beta1 and beta3 integrins.
    Wattam B; Shang D; Rahman S; Egglezou S; Scully M; Kakkar V; Lu X
    Biochem J; 2001 May; 356(Pt 1):11-7. PubMed ID: 11336631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional structure of the RGD-containing neurotoxin homologue dendroaspin.
    Sutcliffe MJ; Jaseja M; Hyde EI; Lu X; Williams JA
    Nat Struct Biol; 1994 Nov; 1(11):802-7. PubMed ID: 7634091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of the single substitution of arginine within the RGD tripeptide motif of a modified neurotoxin dendroaspin on its activity of platelet aggregation and cell adhesion.
    Lu X; Davies J; Lu D; Xia M; Wattam B; Shang D; Sun Y; Scully M; Kakkar V
    Cell Commun Adhes; 2006; 13(3):171-83. PubMed ID: 16798616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elegantin and albolabrin purified peptides from viper venoms: homologies with the RGDS domain of fibrinogen and von Willebrand factor.
    Williams J; Rucinski B; Holt J; Niewiarowski S
    Biochim Biophys Acta; 1990 May; 1039(1):81-9. PubMed ID: 2191722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic RGD peptides derived from the adhesive domains of snake-venom proteins: evaluation as inhibitors of platelet aggregation.
    Lu X; Deadman JJ; Williams JA; Kakkar VV; Rahman S
    Biochem J; 1993 Nov; 296 ( Pt 1)(Pt 1):21-4. PubMed ID: 8250845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of amino acids near the RGD sequence on binding activities between αIIbβ3 integrin and fibrinogen in the presence of RGD-containing synthetic peptides from elegantin and angustatin.
    Oyama E; Takahashi H; Ishii K
    Peptides; 2017 Oct; 96():31-37. PubMed ID: 28887046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of disintegrins with limited variation in the RGD loop in their binding to purified integrins alpha IIb beta 3, alpha V beta 3 and alpha 5 beta 1 and in cell adhesion inhibition.
    Pfaff M; McLane MA; Beviglia L; Niewiarowski S; Timpl R
    Cell Adhes Commun; 1994 Dec; 2(6):491-501. PubMed ID: 7538018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics and functional differences between dendroaspin and rhodostomin: insights into protein scaffolds in integrin recognition.
    Cheng CH; Chen YC; Shiu JH; Chang YT; Chang YS; Huang CH; Chen CY; Chuang WJ
    Protein Sci; 2012 Dec; 21(12):1872-84. PubMed ID: 23033223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The "linker" region (amino acids 38-47) of the disintegrin elegantin is a novel inhibitory domain of integrin alpha5beta1-dependent cell adhesion on fibronectin: evidence for the negative regulation of fibronectin synergy site biological activity.
    Sumathipala R; Xu C; Seago J; Mould AP; Humphries MJ; Craig SE; Patel Y; Wijelath ES; Sobel M; Rahman S
    J Biol Chem; 2006 Dec; 281(49):37686-96. PubMed ID: 16982624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding interactions of kistrin with platelet glycoprotein IIb-IIIa: analysis by site-directed mutagenesis.
    Dennis MS; Carter P; Lazarus RA
    Proteins; 1993 Mar; 15(3):312-21. PubMed ID: 8456099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification by Site-directed Mutagenesis of Amino Acid Residues Flanking RGD Motifs of Snake Venom Disintegrins for Their Structure and Function.
    Xu CS; Rahman S
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2001; 33(2):153-157. PubMed ID: 12050803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid sequence and molecular modelling of glycoprotein IIb-IIIa and fibronectin receptor iso-antagonists from Trimeresurus elegans venom.
    Scaloni A; Di Martino E; Miraglia N; Pelagalli A; Della Morte R; Staiano N; Pucci P
    Biochem J; 1996 Nov; 319 ( Pt 3)(Pt 3):775-82. PubMed ID: 8920980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete amino acid sequence of kaouthiagin, a novel cobra venom metalloproteinase with two disintegrin-like sequences.
    Ito M; Hamako J; Sakurai Y; Matsumoto M; Fujimura Y; Suzuki M; Hashimoto K; Titani K; Matsui T
    Biochemistry; 2001 Apr; 40(14):4503-11. PubMed ID: 11284707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positional importance of Pro53 adjacent to the Arg49-Gly50-Asp51 sequence of rhodostomin in binding to integrin alphaIIbbeta3.
    Chang CP; Chang JC; Chang HH; Tsai WJ; Lo SJ
    Biochem J; 2001 Jul; 357(Pt 1):57-64. PubMed ID: 11415436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.