These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 8550602)

  • 1. Biochemical characterization and molecular cloning of cardiac triadin.
    Guo W; Jorgensen AO; Jones LR; Campbell KP
    J Biol Chem; 1996 Jan; 271(1):458-65. PubMed ID: 8550602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum.
    Guo W; Campbell KP
    J Biol Chem; 1995 Apr; 270(16):9027-30. PubMed ID: 7721813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning and characterization of mouse cardiac triadin isoforms.
    Hong CS; Ji JH; Kim JP; Jung DH; Kim DH
    Gene; 2001 Oct; 278(1-2):193-9. PubMed ID: 11707337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane.
    Zhang L; Kelley J; Schmeisser G; Kobayashi YM; Jones LR
    J Biol Chem; 1997 Sep; 272(37):23389-97. PubMed ID: 9287354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling.
    Goonasekera SA; Beard NA; Groom L; Kimura T; Lyfenko AD; Rosenfeld A; Marty I; Dulhunty AF; Dirksen RT
    J Gen Physiol; 2007 Oct; 130(4):365-78. PubMed ID: 17846166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Junctin and triadin each activate skeletal ryanodine receptors but junctin alone mediates functional interactions with calsequestrin.
    Wei L; Gallant EM; Dulhunty AF; Beard NA
    Int J Biochem Cell Biol; 2009 Nov; 41(11):2214-24. PubMed ID: 19398037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum.
    Jones LR; Zhang L; Sanborn K; Jorgensen AO; Kelley J
    J Biol Chem; 1995 Dec; 270(51):30787-96. PubMed ID: 8530521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning of the cDNA encoding human skeletal muscle triadin and its localisation to chromosome 6q22-6q23.
    Taske NL; Eyre HJ; O'Brien RO; Sutherland GR; Denborough MA; Foster PS
    Eur J Biochem; 1995 Oct; 233(1):258-65. PubMed ID: 7588753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning of junctin from human and developing rabbit heart.
    Wetzel GT; Ding S; Chen F
    Mol Genet Metab; 2000 Mar; 69(3):252-8. PubMed ID: 10767180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of triadin 1 as the predominant triadin isoform expressed in mammalian myocardium.
    Kobayashi YM; Jones LR
    J Biol Chem; 1999 Oct; 274(40):28660-8. PubMed ID: 10497235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural alterations in cardiac calcium release units resulting from overexpression of junctin.
    Zhang L; Franzini-Armstrong C; Ramesh V; Jones LR
    J Mol Cell Cardiol; 2001 Feb; 33(2):233-47. PubMed ID: 11162129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding sites of monoclonal antibodies and dihydropyridine receptor alpha 1 subunit cytoplasmic II-III loop on skeletal muscle triadin fusion peptides.
    Fan H; Brandt NR; Peng M; Schwartz A; Caswell AH
    Biochemistry; 1995 Nov; 34(45):14893-901. PubMed ID: 7578101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization and characterization of the calsequestrin-binding domain of triadin 1. Evidence for a charged beta-strand in mediating the protein-protein interaction.
    Kobayashi YM; Alseikhan BA; Jones LR
    J Biol Chem; 2000 Jun; 275(23):17639-46. PubMed ID: 10748065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New roles of calsequestrin and triadin in cardiac muscle.
    Knollmann BC
    J Physiol; 2009 Jul; 587(Pt 13):3081-7. PubMed ID: 19451205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sarcoplasmic reticulum Ca2+ release in neonatal rat cardiac myocytes.
    Gergs U; Kirchhefer U; Buskase J; Kiele-Dunsche K; Buchwalow IB; Jones LR; Schmitz W; Traub O; Neumann J
    J Mol Cell Cardiol; 2011 Nov; 51(5):682-8. PubMed ID: 21871897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin.
    Lee JM; Rho SH; Shin DW; Cho C; Park WJ; Eom SH; Ma J; Kim DH
    J Biol Chem; 2004 Feb; 279(8):6994-7000. PubMed ID: 14638677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium.
    Györke I; Hester N; Jones LR; Györke S
    Biophys J; 2004 Apr; 86(4):2121-8. PubMed ID: 15041652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis.
    Tunwell RE; Wickenden C; Bertrand BM; Shevchenko VI; Walsh MB; Allen PD; Lai FA
    Biochem J; 1996 Sep; 318 ( Pt 2)(Pt 2):477-87. PubMed ID: 8809036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Ca(2+)-Dependent Protein-Protein Interactions within the Ca(2+) Release Units of Cardiac Sarcoplasmic Reticulum.
    Rani S; Park CS; Sreenivasaiah PK; Kim DH
    Mol Cells; 2016 Feb; 39(2):149-55. PubMed ID: 26674963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.