These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 8550626)

  • 1. Different mechanisms for Ca2+ dissociation from complexes of calmodulin with nitric oxide synthase or myosin light chain kinase.
    Persechini A; White HD; Gansz KJ
    J Biol Chem; 1996 Jan; 271(1):62-7. PubMed ID: 8550626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of myosin light chain kinase and nitric oxide synthase activities by calmodulin fragments.
    Persechini A; McMillan K; Leakey P
    J Biol Chem; 1994 Jun; 269(23):16148-54. PubMed ID: 7515878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermolecular tuning of calmodulin by target peptides and proteins: differential effects on Ca2+ binding and implications for kinase activation.
    Peersen OB; Madsen TS; Falke JJ
    Protein Sci; 1997 Apr; 6(4):794-807. PubMed ID: 9098889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced skeletal muscle contraction with myosin light chain phosphorylation by a calmodulin-sensing kinase.
    Ryder JW; Lau KS; Kamm KE; Stull JT
    J Biol Chem; 2007 Jul; 282(28):20447-54. PubMed ID: 17504755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of myosin light chain kinase and peptides on Ca2+ exchange with the N- and C-terminal Ca2+ binding sites of calmodulin.
    Johnson JD; Snyder C; Walsh M; Flynn M
    J Biol Chem; 1996 Jan; 271(2):761-7. PubMed ID: 8557684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further insights into calmodulin-myosin light chain kinase interaction from solution scattering and shape restoration.
    Heller WT; Krueger JK; Trewhella J
    Biochemistry; 2003 Sep; 42(36):10579-88. PubMed ID: 12962481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fourth EF-hand of calmodulin and its helix-loop-helix components: impact on calcium binding and enzyme activation.
    George SE; Su Z; Fan D; Wang S; Johnson JD
    Biochemistry; 1996 Jun; 35(25):8307-13. PubMed ID: 8679587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+, caldesmon, and myosin light chain kinase exchange with calmodulin.
    Kasturi R; Vasulka C; Johnson JD
    J Biol Chem; 1993 Apr; 268(11):7958-64. PubMed ID: 8463316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosine phosphorylation modulates the interaction of calmodulin with its target proteins.
    Corti C; Leclerc L'Hostis E; Quadroni M; Schmid H; Durussel I; Cox J; Dainese Hatt P; James P; Carafoli E
    Eur J Biochem; 1999 Jun; 262(3):790-802. PubMed ID: 10411641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the Ca2+ -dependent and -independent interactions between calmodulin and its binding domain of inducible nitric oxide synthase.
    Yuan T; Vogel HJ; Sutherland C; Walsh MP
    FEBS Lett; 1998 Jul; 431(2):210-4. PubMed ID: 9708904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruthenium red inhibits the binding of calcium to calmodulin required for enzyme activation.
    Sasaki T; Naka M; Nakamura F; Tanaka T
    J Biol Chem; 1992 Oct; 267(30):21518-23. PubMed ID: 1383224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of myosin light chain kinase and nitric oxide synthase activities by engineered calmodulins with duplicated or exchanged EF hand pairs.
    Persechini A; Gansz KJ; Paresi RJ
    Biochemistry; 1996 Jan; 35(1):224-8. PubMed ID: 8555178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium binding sites of calmodulin and electron transfer by neuronal nitric oxide synthase.
    Stevens-Truss R; Beckingham K; Marletta MA
    Biochemistry; 1997 Oct; 36(40):12337-45. PubMed ID: 9315874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding kinetics of calmodulin with target peptides of three nitric oxide synthase isozymes.
    Wu G; Berka V; Tsai AL
    J Inorg Biochem; 2011 Sep; 105(9):1226-37. PubMed ID: 21763233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calmodulin binding to myosin light chain kinase begins at substoichiometric Ca2+ concentrations: a small-angle scattering study of binding and conformational transitions.
    Krueger JK; Bishop NA; Blumenthal DK; Zhi G; Beckingham K; Stull JT; Trewhella J
    Biochemistry; 1998 Dec; 37(51):17810-7. PubMed ID: 9922147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory segments of Ca2+/calmodulin-dependent protein kinases.
    Zhi G; Abdullah SM; Stull JT
    J Biol Chem; 1998 Apr; 273(15):8951-7. PubMed ID: 9535879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca(2+)/calmodulin-dependent electron transfer.
    Daff S; Sagami I; Shimizu T
    J Biol Chem; 1999 Oct; 274(43):30589-95. PubMed ID: 10521442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification, characterization, and comparison of the calmodulin-binding domains of the endothelial and inducible nitric oxide synthases.
    Venema RC; Sayegh HS; Kent JD; Harrison DG
    J Biol Chem; 1996 Mar; 271(11):6435-40. PubMed ID: 8626444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization of the interactions between calmodulin and skeletal muscle myosin light chain kinase: effect of peptide (576-594)G binding on the Ca2+-binding domains.
    Seeholzer SH; Wand AJ
    Biochemistry; 1989 May; 28(9):4011-20. PubMed ID: 2752005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of smooth muscle myosin light chain kinase by Ca2+/calmodulin-dependent protein kinase II: comparative study of the phosphorylation sites.
    Hashimoto Y; Soderling TR
    Arch Biochem Biophys; 1990 Apr; 278(1):41-5. PubMed ID: 2157362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.