These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 8550627)
1. Biochemical characterization of symmetric GroEL-GroES complexes. Evidence for a role in protein folding. Llorca O; Carrascosa JL; Valpuesta JM J Biol Chem; 1996 Jan; 271(1):68-76. PubMed ID: 8550627 [TBL] [Abstract][Full Text] [Related]
2. Symmetric GroEL-GroES complexes can contain substrate simultaneously in both GroEL rings. Llorca O; Marco S; Carrascosa JL; Valpuesta JM FEBS Lett; 1997 Mar; 405(2):195-9. PubMed ID: 9089290 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis. Hayer-Hartl MK; Weber F; Hartl FU EMBO J; 1996 Nov; 15(22):6111-21. PubMed ID: 8947033 [TBL] [Abstract][Full Text] [Related]
4. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding. Smith KE; Fisher MT J Biol Chem; 1995 Sep; 270(37):21517-23. PubMed ID: 7665563 [TBL] [Abstract][Full Text] [Related]
5. Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes. Haldar S; Gupta AJ; Yan X; Miličić G; Hartl FU; Hayer-Hartl M J Mol Biol; 2015 Jun; 427(12):2244-55. PubMed ID: 25912285 [TBL] [Abstract][Full Text] [Related]
6. The formation of symmetrical GroEL-GroES complexes in the presence of ATP. Llorca O; Marco S; Carrascosa JL; Valpuesta JM FEBS Lett; 1994 May; 345(2-3):181-6. PubMed ID: 7911087 [TBL] [Abstract][Full Text] [Related]
7. GroEL-substrate-GroES ternary complexes are an important transient intermediate of the chaperonin cycle. Miyazaki T; Yoshimi T; Furutsu Y; Hongo K; Mizobata T; Kanemori M; Kawata Y J Biol Chem; 2002 Dec; 277(52):50621-8. PubMed ID: 12377767 [TBL] [Abstract][Full Text] [Related]
8. Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics. Chaudhry C; Farr GW; Todd MJ; Rye HS; Brunger AT; Adams PD; Horwich AL; Sigler PB EMBO J; 2003 Oct; 22(19):4877-87. PubMed ID: 14517228 [TBL] [Abstract][Full Text] [Related]
9. GroEL and the GroEL-GroES Complex. Ishii N Subcell Biochem; 2017; 83():483-504. PubMed ID: 28271487 [TBL] [Abstract][Full Text] [Related]
10. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Hayer-Hartl MK; Martin J; Hartl FU Science; 1995 Aug; 269(5225):836-41. PubMed ID: 7638601 [TBL] [Abstract][Full Text] [Related]
11. Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation. Figueiredo L; Klunker D; Ang D; Naylor DJ; Kerner MJ; Georgopoulos C; Hartl FU; Hayer-Hartl M J Biol Chem; 2004 Jan; 279(2):1090-9. PubMed ID: 14576149 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Weissman JS; Rye HS; Fenton WA; Beechem JM; Horwich AL Cell; 1996 Feb; 84(3):481-90. PubMed ID: 8608602 [TBL] [Abstract][Full Text] [Related]
13. Refolding of bovine mitochondrial rhodanese by chaperonins GroEL and GroES. Weber F; Hayer-Hartl M Methods Mol Biol; 2000; 140():117-26. PubMed ID: 11484478 [No Abstract] [Full Text] [Related]
14. TEM and STEM-EDS evaluation of metal nanoparticle encapsulation in GroEL/GroES complexes according to the reaction mechanism of chaperonin. Yoda H; Koike-Takeshita A Microscopy (Oxf); 2021 Jun; 70(3):289-296. PubMed ID: 33173948 [TBL] [Abstract][Full Text] [Related]
15. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate. Taguchi H J Mol Biol; 2015 Sep; 427(18):2912-8. PubMed ID: 25900372 [TBL] [Abstract][Full Text] [Related]
16. Conditions for nucleotide-dependent GroES-GroEL interactions. GroEL14(groES7)2 is favored by an asymmetric distribution of nucleotides. Gorovits BM; Ybarra J; Seale JW; Horowitz PM J Biol Chem; 1997 Oct; 272(43):26999-7004. PubMed ID: 9341138 [TBL] [Abstract][Full Text] [Related]
17. Productive folding of a tethered protein in the chaperonin GroEL-GroES cage. Motojima F; Yoshida M Biochem Biophys Res Commun; 2015 Oct; 466(1):72-5. PubMed ID: 26325470 [TBL] [Abstract][Full Text] [Related]
18. Rhodanese can partially refold in its GroEL-GroES-ADP complex and can be released to give a homogeneous product. Bhattacharyya AM; Horowitz PM Biochemistry; 2002 Feb; 41(7):2421-8. PubMed ID: 11841236 [TBL] [Abstract][Full Text] [Related]
19. Chaperonin-assisted protein folding of the enzyme rhodanese by GroEL/GroES. Horowitz PM Methods Mol Biol; 1995; 40():361-8. PubMed ID: 7633531 [No Abstract] [Full Text] [Related]
20. BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers. Taguchi H; Tsukuda K; Motojima F; Koike-Takeshita A; Yoshida M J Biol Chem; 2004 Oct; 279(44):45737-43. PubMed ID: 15347650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]