BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 8550627)

  • 1. Biochemical characterization of symmetric GroEL-GroES complexes. Evidence for a role in protein folding.
    Llorca O; Carrascosa JL; Valpuesta JM
    J Biol Chem; 1996 Jan; 271(1):68-76. PubMed ID: 8550627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetric GroEL-GroES complexes can contain substrate simultaneously in both GroEL rings.
    Llorca O; Marco S; Carrascosa JL; Valpuesta JM
    FEBS Lett; 1997 Mar; 405(2):195-9. PubMed ID: 9089290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis.
    Hayer-Hartl MK; Weber F; Hartl FU
    EMBO J; 1996 Nov; 15(22):6111-21. PubMed ID: 8947033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding.
    Smith KE; Fisher MT
    J Biol Chem; 1995 Sep; 270(37):21517-23. PubMed ID: 7665563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes.
    Haldar S; Gupta AJ; Yan X; Miličić G; Hartl FU; Hayer-Hartl M
    J Mol Biol; 2015 Jun; 427(12):2244-55. PubMed ID: 25912285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The formation of symmetrical GroEL-GroES complexes in the presence of ATP.
    Llorca O; Marco S; Carrascosa JL; Valpuesta JM
    FEBS Lett; 1994 May; 345(2-3):181-6. PubMed ID: 7911087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GroEL-substrate-GroES ternary complexes are an important transient intermediate of the chaperonin cycle.
    Miyazaki T; Yoshimi T; Furutsu Y; Hongo K; Mizobata T; Kanemori M; Kawata Y
    J Biol Chem; 2002 Dec; 277(52):50621-8. PubMed ID: 12377767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics.
    Chaudhry C; Farr GW; Todd MJ; Rye HS; Brunger AT; Adams PD; Horwich AL; Sigler PB
    EMBO J; 2003 Oct; 22(19):4877-87. PubMed ID: 14517228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GroEL and the GroEL-GroES Complex.
    Ishii N
    Subcell Biochem; 2017; 83():483-504. PubMed ID: 28271487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding.
    Hayer-Hartl MK; Martin J; Hartl FU
    Science; 1995 Aug; 269(5225):836-41. PubMed ID: 7638601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation.
    Figueiredo L; Klunker D; Ang D; Naylor DJ; Kerner MJ; Georgopoulos C; Hartl FU; Hayer-Hartl M
    J Biol Chem; 2004 Jan; 279(2):1090-9. PubMed ID: 14576149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction.
    Weissman JS; Rye HS; Fenton WA; Beechem JM; Horwich AL
    Cell; 1996 Feb; 84(3):481-90. PubMed ID: 8608602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refolding of bovine mitochondrial rhodanese by chaperonins GroEL and GroES.
    Weber F; Hayer-Hartl M
    Methods Mol Biol; 2000; 140():117-26. PubMed ID: 11484478
    [No Abstract]   [Full Text] [Related]  

  • 14. TEM and STEM-EDS evaluation of metal nanoparticle encapsulation in GroEL/GroES complexes according to the reaction mechanism of chaperonin.
    Yoda H; Koike-Takeshita A
    Microscopy (Oxf); 2021 Jun; 70(3):289-296. PubMed ID: 33173948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate.
    Taguchi H
    J Mol Biol; 2015 Sep; 427(18):2912-8. PubMed ID: 25900372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditions for nucleotide-dependent GroES-GroEL interactions. GroEL14(groES7)2 is favored by an asymmetric distribution of nucleotides.
    Gorovits BM; Ybarra J; Seale JW; Horowitz PM
    J Biol Chem; 1997 Oct; 272(43):26999-7004. PubMed ID: 9341138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Productive folding of a tethered protein in the chaperonin GroEL-GroES cage.
    Motojima F; Yoshida M
    Biochem Biophys Res Commun; 2015 Oct; 466(1):72-5. PubMed ID: 26325470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodanese can partially refold in its GroEL-GroES-ADP complex and can be released to give a homogeneous product.
    Bhattacharyya AM; Horowitz PM
    Biochemistry; 2002 Feb; 41(7):2421-8. PubMed ID: 11841236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaperonin-assisted protein folding of the enzyme rhodanese by GroEL/GroES.
    Horowitz PM
    Methods Mol Biol; 1995; 40():361-8. PubMed ID: 7633531
    [No Abstract]   [Full Text] [Related]  

  • 20. BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers.
    Taguchi H; Tsukuda K; Motojima F; Koike-Takeshita A; Yoshida M
    J Biol Chem; 2004 Oct; 279(44):45737-43. PubMed ID: 15347650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.