These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 8550642)

  • 1. Flow visualization with air and smoke in a bypass graft model under steady flow conditions.
    Johnson LR; Shanebrook JR
    J Biomech; 1995 Oct; 28(10):1237-41. PubMed ID: 8550642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow structures at the proximal side-to-end anastomosis. Influence of geometry and flow division.
    Hughes PE; How TV
    J Biomech Eng; 1995 May; 117(2):224-36. PubMed ID: 7666660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local and global geometric influence on steady flow in distal anastomoses of peripheral bypass grafts.
    Giordana S; Sherwin SJ; Peiró J; Doorly DJ; Crane JS; Lee KE; Cheshire NJ; Caro CG
    J Biomech Eng; 2005 Dec; 127(7):1087-98. PubMed ID: 16502651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical model study of flow dynamics through an end-to-side anastomosis: choice of anastomosis angle and prosthesis diameter.
    Pousset Y; Lermusiaux P; Berton G; Le Gouez JM; Leroy R
    Ann Vasc Surg; 2006 Nov; 20(6):773-9. PubMed ID: 17136315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodynamics of a side-to-end proximal arterial anastomosis model.
    Ojha M; Cobbold RS; Johnston KW
    J Vasc Surg; 1993 Apr; 17(4):646-55. PubMed ID: 8464081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of pressure drop flowrate relationship of axillobifemoral bypass grafts.
    How TV; al-Shukri S
    Proc Inst Mech Eng H; 1991; 205(4):243-9. PubMed ID: 1670082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of geometry and flow division on flow structures in models of the distal end-to-side anastomosis.
    Hughes PE; How TV
    J Biomech; 1996 Jul; 29(7):855-72. PubMed ID: 8809616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational investigations of a new prosthetic femoral-popliteal bypass graft design.
    O'Brien TP; Grace P; Walsh M; Burke P; McGloughlin T
    J Vasc Surg; 2005 Dec; 42(6):1169-75. PubMed ID: 16376210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attenuation of flow disturbances in tapered arterial grafts.
    Black RA; How TV
    J Biomech Eng; 1989 Nov; 111(4):303-10. PubMed ID: 2486369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review.
    Haruguchi H; Teraoka S
    J Artif Organs; 2003; 6(4):227-35. PubMed ID: 14691664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of flow through a Miller cuff bypass graft.
    Henry FS; Küpper C; Lewington NP
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):207-17. PubMed ID: 12186713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: a numerical model study.
    Fei DY; Thomas JD; Rittgers SE
    J Biomech Eng; 1994 Aug; 116(3):331-6. PubMed ID: 7799636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow visualization analysis in a model of artery-graft anastomosis.
    Matsumoto T; Naiki T; Hayashi K
    Biomed Mater Eng; 1992; 2(4):171-83. PubMed ID: 1483119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational and experimental simulations of the haemodynamics at cuffed arterial bypass graft anastomoses.
    Cole JS; Wijesinghe LD; Watterson JK; Scott DJ
    Proc Inst Mech Eng H; 2002; 216(2):135-43. PubMed ID: 12022420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local haemodynamics of arterial bypass graft anastomoses.
    Rowe CS; Carpenter TK; How TV; Harris PL
    Proc Inst Mech Eng H; 1999; 213(5):401-9. PubMed ID: 10581967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamic patterns in two models of end-to-side vascular graft anastomoses: effects of pulsatility, flow division, Reynolds number, and hood length.
    White SS; Zarins CK; Giddens DP; Bassiouny H; Loth F; Jones SA; Glagov S
    J Biomech Eng; 1993 Feb; 115(1):104-11. PubMed ID: 8445887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: an in vitro model study.
    Keynton RS; Rittgers SE; Shu MC
    J Biomech Eng; 1991 Nov; 113(4):458-63. PubMed ID: 1762444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why Patencies of Femoropopliteal Bypass Grafts with Distal End-to-End Anastomosis are Comparable with End-to-Side Anastomosis.
    Hoedt M; How T; Poyck P; Wittens C
    Ann Thorac Cardiovasc Surg; 2015; 21(2):157-64. PubMed ID: 25641036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Influences of graft diameter on the blood flow in 2-way bypassing surgery].
    Qiao A; Liu Y; Zhang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):346-50, 377. PubMed ID: 18610620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of steady-flow instability and turbulence levels in Dacron vascular grafts.
    Shombert DG
    J Biomech Eng; 1992 Nov; 114(4):521-6. PubMed ID: 1487906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.