These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65 related articles for article (PubMed ID: 8551089)
1. [Bone formation and mechanical properties of the cancellous bone defect site filled with hydroxyapatite granules]. Kuroda T Nihon Seikeigeka Gakkai Zasshi; 1995 Oct; 69(10):1037-49. PubMed ID: 8551089 [TBL] [Abstract][Full Text] [Related]
2. Effects of granule size on the osteoconductivity of bovine and synthetic hydroxyapatite: a histologic and histometric study in dogs. Carvalho AL; Faria PE; Grisi MF; Souza SL; Taba MJ; Palioto DB; Novaes AB; Fraga AF; Ozyegin LS; Oktar FN; Salata LA J Oral Implantol; 2007; 33(5):267-76. PubMed ID: 17987858 [TBL] [Abstract][Full Text] [Related]
3. Mechanical properties of bone after implantation of apatite-wollastonite containing glass ceramic-fibrin mixture. Ono K; Yamamuro T; Nakamura T; Kokubo T J Biomed Mater Res; 1990 Jan; 24(1):47-63. PubMed ID: 2154498 [TBL] [Abstract][Full Text] [Related]
4. [Use of bioactive glass ceramics in the treatment of tibial plateau fractures]. Urban K Acta Chir Orthop Traumatol Cech; 2002; 69(5):295-301. PubMed ID: 12557600 [TBL] [Abstract][Full Text] [Related]
5. Novel application of HA-TCP biomaterials in distraction osteogenesis shortened the lengthening time and promoted bone consolidation. Wang Y; Ni M; Tang PF; Li G J Orthop Res; 2009 Apr; 27(4):477-82. PubMed ID: 18973240 [TBL] [Abstract][Full Text] [Related]
6. [Repair of articular cartilage defect with poly-lactide-co-glycolide loaded with recombinant human bone morphogenetic protein in rabbits]. Cui Y; Wu J; Hu Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Nov; 21(11):1233-7. PubMed ID: 18069483 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of an in situ formed synthetic hydrogel as a biodegradable membrane for guided bone regeneration. Jung RE; Zwahlen R; Weber FE; Molenberg A; van Lenthe GH; Hammerle CH Clin Oral Implants Res; 2006 Aug; 17(4):426-33. PubMed ID: 16907774 [TBL] [Abstract][Full Text] [Related]
8. [Experimental study of hydroxyapatite (HA) granules filled around the titanium implant]. Zhao S; Wang S; Yan J Zhonghua Kou Qiang Yi Xue Za Zhi; 1998 Nov; 33(6):353-4. PubMed ID: 11774440 [TBL] [Abstract][Full Text] [Related]
9. Reconstruction of large bone defects with calcium phosphate ceramics--an experimental study. Patka P; den Otter G; de Groot K; Driessen AA Neth J Surg; 1985 Apr; 37(2):38-44. PubMed ID: 4000517 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical behavior of hydroxyapatite as bone substitute material in a loaded implant model. On the surface strain measurement and the maximum compression strength determination of material crash. Noro T; Itoh K Biomed Mater Eng; 1999; 9(5-6):319-24. PubMed ID: 10822487 [TBL] [Abstract][Full Text] [Related]
11. [Repair of bone defect with compound of coralline hydroxyapatite porous, fibrin sealant and Staphylococcus aureus injection]. Wei ZC; Cai DZ; Zhang JF Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2003 Sep; 17(5):363-6. PubMed ID: 14551930 [TBL] [Abstract][Full Text] [Related]
12. Bone formation in the presence of phagocytosable hydroxyapatite particles. Wang JS; Goodman S; Aspenberg P Clin Orthop Relat Res; 1994 Jul; (304):272-9. PubMed ID: 8020228 [TBL] [Abstract][Full Text] [Related]
13. Histological and radiographic evaluations of demineralized bone matrix and coralline hydroxyapatite in the rabbit tibia. Zhukauskas R; Dodds RA; Hartill C; Arola T; Cobb RR; Fox C J Biomater Appl; 2010 Mar; 24(7):639-56. PubMed ID: 19581323 [TBL] [Abstract][Full Text] [Related]
14. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect. Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967 [TBL] [Abstract][Full Text] [Related]
15. Histological evaluation of the early bone response to hydroxyapatite (HA) implanted in rabbit tibia. Khadijah K; Mashita M; Saidu MF; Fazilah F; Khalid KA Med J Malaysia; 2004 May; 59 Suppl B():123-4. PubMed ID: 15468849 [TBL] [Abstract][Full Text] [Related]
16. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157 [TBL] [Abstract][Full Text] [Related]
17. Assessment of resorbable bioactive material for grafting of critical-size cancellous defects. Wheeler DL; Eschbach EJ; Hoellrich RG; Montfort MJ; Chamberland DL J Orthop Res; 2000 Jan; 18(1):140-8. PubMed ID: 10716290 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical evaluation of rat skull defects, 1, 3, and 6 months after implantation with osteopromotive substances. Jones L; Thomsen JS; Mosekilde L; Bosch C; Melsen B J Craniomaxillofac Surg; 2007 Dec; 35(8):350-7. PubMed ID: 17951064 [TBL] [Abstract][Full Text] [Related]
19. [Experimental study of repairing skull defect with autogenous cranial bone dust]. Chen MJ; Zhuang FL; Wang MS; Wang B Zhonghua Zheng Xing Wai Ke Za Zhi; 2008 May; 24(3):203-7. PubMed ID: 18717356 [TBL] [Abstract][Full Text] [Related]
20. On the influence of mechanical conditions in osteochondral defect healing. Duda GN; Maldonado ZM; Klein P; Heller MO; Burns J; Bail H J Biomech; 2005 Apr; 38(4):843-51. PubMed ID: 15713306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]