BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 8551338)

  • 1. Mechanisms of secondary injury to spinal cord axons in vitro: role of Na+, Na(+)-K(+)-ATPase, the Na(+)-H+ exchanger, and the Na(+)-Ca2+ exchanger.
    Agrawal SK; Fehlings MG
    J Neurosci; 1996 Jan; 16(2):545-52. PubMed ID: 8551338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of sodium in the pathophysiology of secondary spinal cord injury.
    Fehlings MG; Agrawal S
    Spine (Phila Pa 1976); 1995 Oct; 20(20):2187-91. PubMed ID: 8545710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Na(+)-Ca(2+) exchanger after traumatic or hypoxic/ischemic injury to spinal cord white matter.
    Tomes DJ; Agrawal SK
    Spine J; 2002; 2(1):35-40. PubMed ID: 14588286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger.
    Stys PK; Waxman SG; Ransom BR
    J Neurosci; 1992 Feb; 12(2):430-9. PubMed ID: 1311030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anoxic injury in the rat spinal cord: pharmacological evidence for multiple steps in Ca(2+)-dependent injury of the dorsal columns.
    Imaizumi T; Kocsis JD; Waxman SG
    J Neurotrauma; 1997 May; 14(5):299-311. PubMed ID: 9199396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of RyRs and IP3 receptors after traumatic injury to spinal cord white matter.
    Thorell WE; Leibrock LG; Agrawal SK
    J Neurotrauma; 2002 Mar; 19(3):335-42. PubMed ID: 11939501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of voltage-gated Ca2+ channels in anoxic injury of spinal cord white matter.
    Imaizumi T; Kocsis JD; Waxman SG
    Brain Res; 1999 Jan; 817(1-2):84-92. PubMed ID: 9889329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of L- and N-type calcium channels in the pathophysiology of traumatic spinal cord white matter injury.
    Agrawal SK; Nashmi R; Fehlings MG
    Neuroscience; 2000; 99(1):179-88. PubMed ID: 10924962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of injury-induced calcium entry into peripheral nerve myelinated axons: role of reverse sodium-calcium exchange.
    Lehning EJ; Doshi R; Isaksson N; Stys PK; LoPachin RM
    J Neurochem; 1996 Feb; 66(2):493-500. PubMed ID: 8592118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na(+)-Ca2+ exchange activity in central nerve endings. II. Relationship between pharmacological blockade by amiloride analogues and dopamine release from tuberoinfundibular hypothalamic neurons.
    Taglialatela M; Canzoniero LM; Cragoe EJ; Di Renzo G; Annunziato L
    Mol Pharmacol; 1990 Sep; 38(3):393-400. PubMed ID: 2402228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse Na(+)-dependent transport in spinal cord white matter.
    Li S; Stys PK
    Neuroscience; 2001; 107(4):675-83. PubMed ID: 11720790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in pharmacological sensitivity of the spinal cord to potassium channel blockers following acute spinal cord injury.
    Fehlings MG; Nashmi R
    Brain Res; 1996 Oct; 736(1-2):135-45. PubMed ID: 8930318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of axonal dysfunction in an in vitro model of acute compressive injury to adult rat spinal cord axons.
    Fehlings MG; Nashmi R
    Brain Res; 1995 Apr; 677(2):291-9. PubMed ID: 7552255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of NMDA and non-NMDA ionotropic glutamate receptors in traumatic spinal cord axonal injury.
    Agrawal SK; Fehlings MG
    J Neurosci; 1997 Feb; 17(3):1055-63. PubMed ID: 8994060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na(+)-Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian central nervous system white matter.
    Stys PK; Waxman SG; Ransom BR
    Ann Neurol; 1991 Sep; 30(3):375-80. PubMed ID: 1952825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental spinal cord injury: spatiotemporal characterization of elemental concentrations and water contents in axons and neuroglia.
    LoPachin RM; Gaughan CL; Lehning EJ; Kaneko Y; Kelly TM; Blight A
    J Neurophysiol; 1999 Nov; 82(5):2143-53. PubMed ID: 10561394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic mechanisms for the transduction of acidic stimuli in rabbit carotid body glomus cells.
    Rocher A; Obeso A; Gonzalez C; Herreros B
    J Physiol; 1991 Feb; 433():533-48. PubMed ID: 1668755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Na+/Ca2+ exchanger in maintaining [Ca2+]c at a stable state in rat pancreatic islets.
    Yoshihashi K; Shibuya I; Kanno T
    Jpn J Physiol; 1996 Dec; 46(6):473-80. PubMed ID: 9087857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sources of axonal calcium loading during in vitro ischemia of rat dorsal roots.
    Petrescu N; Micu I; Malek S; Ouardouz M; Stys PK
    Muscle Nerve; 2007 Apr; 35(4):451-7. PubMed ID: 17206661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Important role of reverse Na(+)-Ca(2+) exchange in spinal cord white matter injury at physiological temperature.
    Li S; Jiang Q; Stys PK
    J Neurophysiol; 2000 Aug; 84(2):1116-9. PubMed ID: 10938336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.