These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 8552254)
1. Directional regrowth of lesioned corticospinal tract axons in adult rat spinal cord. Joosten EA; Bär PR; Gispen WH Neuroscience; 1995 Nov; 69(2):619-26. PubMed ID: 8552254 [TBL] [Abstract][Full Text] [Related]
2. Alpha-melanocyte stimulating hormone promotes regrowth of injured axons in the adult rat spinal cord. Joosten EA; Majewska B; Houweling DA; Bär PR; Gispen WH J Neurotrauma; 1999 Jun; 16(6):543-53. PubMed ID: 10391370 [TBL] [Abstract][Full Text] [Related]
3. Tropism and corticospinal target selection in the rat. Joosten EA; Gispen WH; Bär PR Neuroscience; 1994 Mar; 59(1):33-41. PubMed ID: 8190270 [TBL] [Abstract][Full Text] [Related]
4. Collagen containing neurotrophin-3 (NT-3) attracts regrowing injured corticospinal axons in the adult rat spinal cord and promotes partial functional recovery. Houweling DA; Lankhorst AJ; Gispen WH; Bär PR; Joosten EA Exp Neurol; 1998 Sep; 153(1):49-59. PubMed ID: 9743566 [TBL] [Abstract][Full Text] [Related]
5. Induction of corticospinal target finding by release of a diffusible, chemotropic factor in cervical spinal grey matter. Joosten EA; van der Ven PF; Hooiveld MH; ten Donkelaar HJ Neurosci Lett; 1991 Jul; 128(1):25-8. PubMed ID: 1922945 [TBL] [Abstract][Full Text] [Related]
6. Collagen implants and cortico-spinal axonal growth after mid-thoracic spinal cord lesion in the adult rat. Joosten EA; Bär PR; Gispen WH J Neurosci Res; 1995 Jul; 41(4):481-90. PubMed ID: 7473879 [TBL] [Abstract][Full Text] [Related]
7. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats. Liang P; Jin LH; Liang T; Liu EZ; Zhao SG Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177 [TBL] [Abstract][Full Text] [Related]
8. Stimulation of corticospinal tract regeneration in the chronically injured spinal cord. Ferguson IA; Koide T; Rush RA Eur J Neurosci; 2001 Mar; 13(5):1059-64. PubMed ID: 11264681 [TBL] [Abstract][Full Text] [Related]
9. Cocultures of rat sensorimotor cortex and spinal cord slices to investigate corticospinal tract sprouting. Stavridis SI; Dehghani F; Korf HW; Hailer NP Spine (Phila Pa 1976); 2009 Nov; 34(23):2494-9. PubMed ID: 19927097 [TBL] [Abstract][Full Text] [Related]
10. Elimination of basal lamina and the collagen "scar" after spinal cord injury fails to augment corticospinal tract regeneration. Weidner N; Grill RJ; Tuszynski MH Exp Neurol; 1999 Nov; 160(1):40-50. PubMed ID: 10630189 [TBL] [Abstract][Full Text] [Related]
11. Prolonged local neurotrophin-3 infusion reduces ipsilateral collateral sprouting of spared corticospinal axons in adult rats. Hagg T; Baker KA; Emsley JG; Tetzlaff W Neuroscience; 2005; 130(4):875-87. PubMed ID: 15652986 [TBL] [Abstract][Full Text] [Related]
12. Lack of topographical organisation of the corticospinal tract in the cervical spinal cord of the adult rat. Jeffery ND; Fitzgerald M Brain Res; 1999 Jul; 833(2):315-8. PubMed ID: 10375712 [TBL] [Abstract][Full Text] [Related]
13. Increased close appositions between corticospinal tract axons and spinal sympathetic neurons after spinal cord injury in rats. Pan B; Kim EJ; Schramm LP J Neurotrauma; 2005 Dec; 22(12):1399-410. PubMed ID: 16379578 [TBL] [Abstract][Full Text] [Related]
14. Postnatal development of the corticospinal tract in the rat. An ultrastructural anterograde HRP study. Joosten EA; Gribnau AA; Dederen PJ Anat Embryol (Berl); 1989; 179(5):449-56. PubMed ID: 2729608 [TBL] [Abstract][Full Text] [Related]
15. Suppression of fibrous scarring in spinal cord injury of rat promotes long-distance regeneration of corticospinal tract axons, rescue of primary motoneurons in somatosensory cortex and significant functional recovery. Klapka N; Hermanns S; Straten G; Masanneck C; Duis S; Hamers FP; Müller D; Zuschratter W; Müller HW Eur J Neurosci; 2005 Dec; 22(12):3047-58. PubMed ID: 16367771 [TBL] [Abstract][Full Text] [Related]
16. Development of specificity in corticospinal connections by axon collaterals branching selectively into appropriate spinal targets. Kuang RZ; Kalil K J Comp Neurol; 1994 Jun; 344(2):270-82. PubMed ID: 8077461 [TBL] [Abstract][Full Text] [Related]
17. Astrocytes and guidance of outgrowing corticospinal tract axons in the rat. An immunocytochemical study using anti-vimentin and anti-glial fibrillary acidic protein. Joosten EA; Gribnau AA Neuroscience; 1989; 31(2):439-52. PubMed ID: 2797445 [TBL] [Abstract][Full Text] [Related]
18. Limitations in transplantation of astroglia-biomatrix bridges to stimulate corticospinal axon regrowth across large spinal lesion gaps. Deumens R; Koopmans GC; Honig WM; Maquet V; Jérôme R; Steinbusch HW; Joosten EA Neurosci Lett; 2006 Jun; 400(3):208-12. PubMed ID: 16530957 [TBL] [Abstract][Full Text] [Related]
19. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord. Mahmood A; Wu H; Qu C; Xiong Y; Chopp M J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801 [TBL] [Abstract][Full Text] [Related]
20. Synapse elimination in the corticospinal projection during the early postnatal period. Kamiyama T; Yoshioka N; Sakurai M J Neurophysiol; 2006 Apr; 95(4):2304-13. PubMed ID: 16267122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]