BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8552305)

  • 21. Diurnal, circadian and photic regulation of calcium/calmodulin-dependent kinase II and neuronal nitric oxide synthase in the hamster suprachiasmatic nuclei.
    Agostino PV; Ferreyra GA; Murad AD; Watanabe Y; Golombek DA
    Neurochem Int; 2004 Jun; 44(8):617-25. PubMed ID: 15016477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gastrin releasing peptide and neuropeptide Y exert opposing actions on circadian phase.
    Kallingal GJ; Mintz EM
    Neurosci Lett; 2007 Jul; 422(1):59-63. PubMed ID: 17597298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glutamatergic activity modulates the phase-shifting effects of gastrin-releasing peptide and light.
    Kallingal GJ; Mintz EM
    Eur J Neurosci; 2006 Nov; 24(10):2853-8. PubMed ID: 17156209
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of systemically applied nAChRα7 agonists and antagonists on light-induced phase shifts of hamster circadian activity rhythms.
    Gannon RL; Garcia DA; Millan MJ
    Eur Neuropsychopharmacol; 2014 Jun; 24(6):964-73. PubMed ID: 24388152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The corticotropin-releasing factor (CRF)(1) receptor antagonists CP154,526 and DMP695 inhibit light-induced phase advances of hamster circadian activity rhythms.
    Gannon RL; Millan MJ
    Brain Res; 2006 Apr; 1083(1):96-102. PubMed ID: 16551464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local administration of serotonin agonists blocks light-induced phase advances of the circadian activity rhythm in the hamster.
    Weber ET; Gannon RL; Rea MA
    J Biol Rhythms; 1998 Jun; 13(3):209-18. PubMed ID: 9615285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper chelation and exogenous copper affect circadian clock phase resetting in the suprachiasmatic nucleus in vitro.
    Yamada Y; Prosser RA
    Neuroscience; 2014 Jan; 256():252-61. PubMed ID: 24161278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Histamine synthesis inhibition reduces light-induced phase shifts of circadian rhythms.
    Eaton SJ; Cote NK; Harrington ME
    Brain Res; 1995 Oct; 695(2):227-30. PubMed ID: 8556334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of photic shifts with the 5-HT1A mixed agonist/antagonist NAN-190: intra-suprachiasmatic nucleus pathway.
    Sterniczuk R; Stepkowski A; Jones M; Antle MC
    Neuroscience; 2008 May; 153(3):571-80. PubMed ID: 18406538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Positive and negative modulation of circadian activity rhythms by mGluR5 and mGluR2/3 metabotropic glutamate receptors.
    Gannon RL; Millan MJ
    Neuropharmacology; 2011; 60(2-3):209-15. PubMed ID: 20831878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Central administration of muscimol phase-shifts the mammalian circadian clock.
    Smith RD; Inouye S; Turek FW
    J Comp Physiol A; 1989 Feb; 164(6):805-14. PubMed ID: 2657038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pituitary adenylate cyclase activating peptide phase shifts circadian rhythms in a manner similar to light.
    Harrington ME; Hoque S; Hall A; Golombek D; Biello S
    J Neurosci; 1999 Aug; 19(15):6637-42. PubMed ID: 10414992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Serotonin1A autoreceptor activation by S 15535 enhances circadian activity rhythms in hamsters: evaluation of potential interactions with serotonin2A and serotonin2C receptors.
    Gannon RL; Millan MJ
    Neuroscience; 2006; 137(1):287-99. PubMed ID: 16289351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glutamate phase shifts circadian activity rhythms in hamsters.
    Meijer JH; van der Zee EA; Dietz M
    Neurosci Lett; 1988 Mar; 86(2):177-83. PubMed ID: 2897094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox and Antioxidant Modulation of Circadian Rhythms: Effects of Nitroxyl, N-Acetylcysteine and Glutathione.
    Plano SA; Baidanoff FM; Trebucq LL; Suarez SÁ; Doctorovich F; Golombek DA; Chiesa JJ
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33925826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigating the role of substance P in photic responses of the circadian system: individual and combined actions with gastrin-releasing peptide.
    Sterniczuk R; Colijn MA; Nunez M; Antle MC
    Neuropharmacology; 2010 Jan; 58(1):277-85. PubMed ID: 19540856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase delays to light and gastrin-releasing peptide require the protein kinase A pathway.
    Sterniczuk R; Yamakawa GR; Pomeroy T; Antle MC
    Neurosci Lett; 2014 Jan; 559():24-9. PubMed ID: 24287375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein kinase C inhibition and activation phase advances the hamster circadian clock.
    Schak KM; Harrington ME
    Brain Res; 1999 Sep; 840(1-2):158-61. PubMed ID: 10517964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aspartate injections into the suprachiasmatic region of the Syrian hamster do not mimic the effects of light on the circadian activity rhythm.
    De Vries MJ; Meijer JH
    Neurosci Lett; 1991 Jun; 127(2):215-8. PubMed ID: 1881633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.