These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 8552515)
21. Relationship between catheter contact force and radiofrequency lesion size and incidence of steam pop in the beating canine heart: electrogram amplitude, impedance, and electrode temperature are poor predictors of electrode-tissue contact force and lesion size. Ikeda A; Nakagawa H; Lambert H; Shah DC; Fonck E; Yulzari A; Sharma T; Pitha JV; Lazzara R; Jackman WM Circ Arrhythm Electrophysiol; 2014 Dec; 7(6):1174-80. PubMed ID: 25381331 [TBL] [Abstract][Full Text] [Related]
22. Relation between impedance and electrode temperature during radiofrequency catheter ablation of accessory pathways and atrioventricular nodal reentrant tachycardia. Nsah E; Berger R; Rosenthal L; Hui R; Ramza B; Jumrussirikul P; Lawrence JH; Tomaselli G; Kass D; Calkins H Am Heart J; 1998 Nov; 136(5):844-51. PubMed ID: 9812080 [TBL] [Abstract][Full Text] [Related]
23. The effects of electrode-tissue contact on radiofrequency lesion generation. Avitall B; Mughal K; Hare J; Helms R; Krum D Pacing Clin Electrophysiol; 1997 Dec; 20(12 Pt 1):2899-910. PubMed ID: 9455749 [TBL] [Abstract][Full Text] [Related]
24. Biophysical and electrical aspects of radiofrequency catheter ablation. Van Haesendonck C; Sinnaeve A; Willems R; Vandenbulcke F; Stroobandt R Acta Cardiol; 1995; 50(2):105-15. PubMed ID: 7610733 [TBL] [Abstract][Full Text] [Related]
26. Feasibility, efficacy, and safety of radiofrequency ablation of atrial fibrillation guided by monitoring of the initial impedance decrease as a surrogate of catheter contact. Reichlin T; Lane C; Nagashima K; Nof E; Chopra N; Ng J; Barbhaiya C; Tadros T; John RM; Stevenson WG; Michaud GF J Cardiovasc Electrophysiol; 2015 Apr; 26(4):390-396. PubMed ID: 25588901 [TBL] [Abstract][Full Text] [Related]
27. Assessment of effects of a radiofrequency energy field and thermistor location in an electrode catheter on the accuracy of temperature measurement. Blouin LT; Marcus FI; Lampe L Pacing Clin Electrophysiol; 1991 May; 14(5 Pt 1):807-13. PubMed ID: 1712958 [TBL] [Abstract][Full Text] [Related]
29. Impedance and temperature monitoring improve the safety of closed-loop irrigated-tip radiofrequency ablation. Thiagalingam A; D'Avila A; McPherson C; Malchano Z; Ruskin J; Reddy VY J Cardiovasc Electrophysiol; 2007 Mar; 18(3):318-25. PubMed ID: 17313656 [TBL] [Abstract][Full Text] [Related]
30. Avoiding microbubbles formation during radiofrequency left atrial ablation versus continuous microbubbles formation and standard radiofrequency ablation protocols: comparison of energy profiles and chronic lesion characteristics. Oh S; Kilicaslan F; Zhang Y; Wazni O; Mazgalev TN; Natale A; Marrouche NF J Cardiovasc Electrophysiol; 2006 Jan; 17(1):72-7. PubMed ID: 16426405 [TBL] [Abstract][Full Text] [Related]
31. Effect of radiofrequency energy delivery in proximity to metallic medical device components. Nguyen DT; Barham W; Zheng L; Dinegar S; Tzou WS; Sauer WH Heart Rhythm; 2015 Oct; 12(10):2162-9. PubMed ID: 26048195 [TBL] [Abstract][Full Text] [Related]
32. Effects of radiofrequency energy delivered through partially insulated metallic catheter tips on myocardial tissue heating and ablation lesion characteristics. Nguyen DT; Moss JD; Zheng L; Huang J; Barham W; Sauer WH Heart Rhythm; 2015 Mar; 12(3):623-630. PubMed ID: 25460861 [TBL] [Abstract][Full Text] [Related]
33. Detection of inadvertent catheter movement into a pulmonary vein during radiofrequency catheter ablation by real-time impedance monitoring. Cheung P; Hall B; Chugh A; Good E; Lemola K; Han J; Tamirisa K; Pelosi F; Morady F; Oral H J Cardiovasc Electrophysiol; 2004 Jun; 15(6):674-8. PubMed ID: 15175063 [TBL] [Abstract][Full Text] [Related]
34. A finite element model for radiofrequency ablation of the myocardium. Shahidi AV; Savard P IEEE Trans Biomed Eng; 1994 Oct; 41(10):963-8. PubMed ID: 7959803 [TBL] [Abstract][Full Text] [Related]
35. Steam pops during irrigated radiofrequency ablation: feasibility of impedance monitoring for prevention. Seiler J; Roberts-Thomson KC; Raymond JM; Vest J; Delacretaz E; Stevenson WG Heart Rhythm; 2008 Oct; 5(10):1411-6. PubMed ID: 18929327 [TBL] [Abstract][Full Text] [Related]
36. Temperature monitoring during radiofrequency catheter ablation procedures using closed loop control. Atakr Multicenter Investigators Group. Calkins H; Prystowsky E; Carlson M; Klein LS; Saul JP; Gillette P Circulation; 1994 Sep; 90(3):1279-86. PubMed ID: 8087936 [TBL] [Abstract][Full Text] [Related]
37. [Significance of temperature-controlled energy generation in high-frequency catheter ablation of accessory conduction pathways]. Kottkamp H; Hindricks G; Chen X; Willems S; Breithardt G; Borggrefe M Z Kardiol; 1994 Aug; 83(8):577-81. PubMed ID: 7975808 [TBL] [Abstract][Full Text] [Related]
39. New method for predicting efficiency of heating by measuring bioimpedance during radiofrequency catheter ablation in humans. Ko WC; Huang SK; Lin JL; Shau WY; Lai LP; Chen PH J Cardiovasc Electrophysiol; 2001 Jul; 12(7):819-23. PubMed ID: 11469435 [TBL] [Abstract][Full Text] [Related]
40. Accuracy of Voltage Signal Measurement During Radiofrequency Delivery Through the SMARTTOUCH Catheter. Safavi-Naeini P; Zafar-Awan D; Zhu H; Zablah G; Ganapathy AV; Rasekh A; Saeed M; Razavi JE; Razavi M J Cardiovasc Electrophysiol; 2017 Jan; 28(1):51-55. PubMed ID: 27762474 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]