BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8552597)

  • 1. Evidence that two present-day components needed for the genetic code appeared after nucleated cells separated from eubacteria.
    Ribas de Pouplana L; Frugier M; Quinn CL; Schimmel P
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):166-70. PubMed ID: 8552597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for the early divergence of tryptophanyl- and tyrosyl-tRNA synthetases.
    Brown JR; Robb FT; Weiss R; Doolittle WF
    J Mol Evol; 1997 Jul; 45(1):9-16. PubMed ID: 9211729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Species-specific differences in the operational RNA code for aminoacylation of tRNA(Trp).
    Xu F; Chen X; Xin L; Chen L; Jin Y; Wang D
    Nucleic Acids Res; 2001 Oct; 29(20):4125-33. PubMed ID: 11600701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures that suggest late development of genetic code components for differentiating aromatic side chains.
    Yang XL; Otero FJ; Skene RJ; McRee DE; Schimmel P; Ribas de Pouplana L
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15376-80. PubMed ID: 14671330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of Pyrococcus horikoshii tryptophanyl-tRNA synthetase and structure-based phylogenetic analysis suggest an archaeal origin of tryptophanyl-tRNA synthetase.
    Dong X; Zhou M; Zhong C; Yang B; Shen N; Ding J
    Nucleic Acids Res; 2010 Mar; 38(4):1401-12. PubMed ID: 19942682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion.
    Kobayashi T; Nureki O; Ishitani R; Yaremchuk A; Tukalo M; Cusack S; Sakamoto K; Yokoyama S
    Nat Struct Biol; 2003 Jun; 10(6):425-32. PubMed ID: 12754495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species-specific tRNA recognition in relation to tRNA synthetase contact residues.
    Nair S; Ribas de Pouplana L; Houman F; Avruch A; Shen X; Schimmel P
    J Mol Biol; 1997 May; 269(1):1-9. PubMed ID: 9192996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic code origins: tRNAs older than their synthetases?
    Ribas de Pouplana L; Turner RJ; Steer BA; Schimmel P
    Proc Natl Acad Sci U S A; 1998 Sep; 95(19):11295-300. PubMed ID: 9736730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on crenarchaeal tyrosylation accuracy with mutational analyses of tyrosyl-tRNA synthetase and tyrosine tRNA from Aeropyrum pernix.
    Iwaki J; Endo K; Ichikawa T; Suzuki R; Fujimoto Z; Momma M; Kuno A; Nishimura S; Hasegawa T
    J Biochem; 2012 Dec; 152(6):539-48. PubMed ID: 23024156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular phylogenetic analysis of tryptophanyl-tRNA synthetase of Actinobacillus actinomycetemcomitans.
    Rajendran N; Rajnarayanan RV; Demuth DR
    Z Naturforsch C J Biosci; 2008; 63(5-6):418-28. PubMed ID: 18669030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-canonical functions of human cytoplasmic tyrosyl-, tryptophanyl- and other aminoacyl-tRNA synthetases.
    Wakasugi K; Yokosawa T
    Enzymes; 2020; 48():207-242. PubMed ID: 33837705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased expression of tryptophan and tyrosine tRNAs elevates stop codon readthrough of reporter systems in human cell lines.
    Beznosková P; Bidou L; Namy O; Valášek LS
    Nucleic Acids Res; 2021 May; 49(9):5202-5215. PubMed ID: 34009360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual targeting of a single tRNA(Trp) requires two different tryptophanyl-tRNA synthetases in Trypanosoma brucei.
    Charrière F; Helgadóttir S; Horn EK; Söll D; Schneider A
    Proc Natl Acad Sci U S A; 2006 May; 103(18):6847-52. PubMed ID: 16636268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and kinetic bases for the recognition of tRNATyr by tyrosyl-tRNA synthetase.
    Labouze E; Bedouelle H
    J Mol Biol; 1989 Feb; 205(4):729-35. PubMed ID: 2467006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Orthogonal Tyrosyl-tRNA Synthetase/tRNA Pair from a Thermophilic Bacterium for an Expanded Eukaryotic Genetic Code.
    Qin X; Tang H; Cao W; Dai Z; Hu L; Huang Y; Liu T
    Biochemistry; 2020 Jan; 59(1):90-99. PubMed ID: 31703481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of angiogenic signaling pathways by two human tRNA synthetases.
    Ewalt KL; Schimmel P
    Biochemistry; 2002 Nov; 41(45):13344-9. PubMed ID: 12416978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ancient adaptation of the active site of tryptophanyl-tRNA synthetase for tryptophan binding.
    Praetorius-Ibba M; Stange-Thomann N; Kitabatake M; Ali K; Söll I; Carter CW; Ibba M; Söll D
    Biochemistry; 2000 Oct; 39(43):13136-43. PubMed ID: 11052665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Functional and evolutionary aspects of the aminoacyl-tRNA synthetases].
    Silva González E; Mosqueira Pérez Salazar FG
    Rev Latinoam Microbiol; 1991; 33(1):87-101. PubMed ID: 1727028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular biology. Invading the genetic code.
    Böck A
    Science; 2001 Apr; 292(5516):453-4. PubMed ID: 11330299
    [No Abstract]   [Full Text] [Related]  

  • 20. Mammalian tryptophanyl-tRNA synthetases.
    Kisselev LL
    Biochimie; 1993; 75(12):1027-39. PubMed ID: 7515282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.