These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 8553120)
1. Use of sensory-evoked potentials recorded from the human occiput for intraoperative physiologic monitoring of the spinal cord. Hurlbert RJ; Fehlings MG; Moncada MS Spine (Phila Pa 1976); 1995 Nov; 20(21):2318-27. PubMed ID: 8553120 [TBL] [Abstract][Full Text] [Related]
2. Neurophysiological detection of impending spinal cord injury during scoliosis surgery. Schwartz DM; Auerbach JD; Dormans JP; Flynn J; Drummond DS; Bowe JA; Laufer S; Shah SA; Bowen JR; Pizzutillo PD; Jones KJ; Drummond DS J Bone Joint Surg Am; 2007 Nov; 89(11):2440-9. PubMed ID: 17974887 [TBL] [Abstract][Full Text] [Related]
3. Evoked potentials from direct cerebellar stimulation for monitoring of the rodent spinal cord. Hurlbert RJ; Tator CH; Fehlings MG; Niznik G; Linden RD J Neurosurg; 1992 Feb; 76(2):280-91. PubMed ID: 1730957 [TBL] [Abstract][Full Text] [Related]
4. Cortical activity after stimulation of the corticospinal tract in the spinal cord. Costa P; Deletis V Clin Neurophysiol; 2016 Feb; 127(2):1726-1733. PubMed ID: 26679418 [TBL] [Abstract][Full Text] [Related]
5. Spine and scalp recordings as a function of intensity. A model for changes during spinal cord monitoring. Slimp JC; Stolov WC; Wagner TA Spine (Phila Pa 1976); 1996 Jan; 21(1):99-103. PubMed ID: 9122771 [TBL] [Abstract][Full Text] [Related]
6. [Selective and non-invasive monitoring of the posterior columns and pyramidal tract during surgery of the spine and spinal cord]. Azabou E; Delage JM; Hennig M; Macadoux G; Lofaso F; Garreau de Loubresse C Rev Neurol (Paris); 2015 Sep; 171(8-9):646-54. PubMed ID: 26321313 [TBL] [Abstract][Full Text] [Related]
7. Femoral artery ischemia during spinal scoliosis surgery detected by posterior tibial nerve somatosensory-evoked potential monitoring. Vossler DG; Stonecipher T; Millen MD Spine (Phila Pa 1976); 2000 Jun; 25(11):1457-9. PubMed ID: 10828931 [TBL] [Abstract][Full Text] [Related]
8. Re. Transcranial motor-evoked potentials combined with response recording through compound muscle action potentials as the sole modality of spinal cord monitoring in spinal deformity surgery. Hsu, Cree, Lagopolous and Cummine. Spine. 33(10). 1100-1106. Norton JA Spine (Phila Pa 1976); 2008 Nov; 33(23):2576. PubMed ID: 18978598 [No Abstract] [Full Text] [Related]
9. "Threshold-level" multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. Calancie B; Harris W; Broton JG; Alexeeva N; Green BA J Neurosurg; 1998 Mar; 88(3):457-70. PubMed ID: 9488299 [TBL] [Abstract][Full Text] [Related]
10. Multimodality intraoperative neurophysiologic monitoring findings during surgery for adult tethered cord syndrome: analysis of a series of 44 patients with long-term follow-up. Paradiso G; Lee GY; Sarjeant R; Hoang L; Massicotte EM; Fehlings MG Spine (Phila Pa 1976); 2006 Aug; 31(18):2095-102. PubMed ID: 16915095 [TBL] [Abstract][Full Text] [Related]
11. The application of intraoperative monitoring during surgery for spinal deformity. Owen JH Spine (Phila Pa 1976); 1999 Dec; 24(24):2649-62. PubMed ID: 10635528 [No Abstract] [Full Text] [Related]
13. Evaluation of various evoked potential techniques for spinal cord monitoring during scoliosis surgery. Luk KD; Hu Y; Wong YW; Cheung KM Spine (Phila Pa 1976); 2001 Aug; 26(16):1772-7. PubMed ID: 11493849 [TBL] [Abstract][Full Text] [Related]
14. Anterior neck recording of intraoperative somatosensory-evoked potentials in children. Helmers SL; Carmant L; Flanigin D Spine (Phila Pa 1976); 1995 Apr; 20(7):782-6. PubMed ID: 7701390 [TBL] [Abstract][Full Text] [Related]
15. The value of bilateral ipsilateral and contralateral motor evoked potential monitoring in scoliosis surgery. Lo YL; Dan YF; Teo A; Tan YE; Yue WM; Raman S; Tan SB Eur Spine J; 2008 Sep; 17 Suppl 2(Suppl 2):S236-8. PubMed ID: 17874145 [TBL] [Abstract][Full Text] [Related]
16. Time-frequency analysis of somatosensory evoked potentials for intraoperative spinal cord monitoring. Hu Y; Liu H; Luk KD J Clin Neurophysiol; 2011 Oct; 28(5):504-11. PubMed ID: 21946365 [TBL] [Abstract][Full Text] [Related]
17. A new technique for intraoperative monitoring of spinal cord function: multichannel recording of spinal cord and subcortical evoked potentials. Lueders H; Gurd A; Hahn J; Andrish J; Weiker G; Klem G Spine (Phila Pa 1976); 1982; 7(2):110-5. PubMed ID: 7089686 [TBL] [Abstract][Full Text] [Related]
18. Spinal cord monitoring. Electrophysiological measures of sensory and motor function during spinal surgery. Machida M; Weinstein SL; Yamada T; Kimura J Spine (Phila Pa 1976); 1985 Jun; 10(5):407-13. PubMed ID: 4049106 [TBL] [Abstract][Full Text] [Related]
19. Successful monitoring of neurogenic mixed evoked potentials elicited by anterior spinal cord stimulation through thoracoscopy during spine surgery. Péréon Y; Delécrin J; Nguyeni The Tich SN; Bertrand-Vasseur A; Passuti N Spine (Phila Pa 1976); 1999 Oct; 24(19):2025-9. PubMed ID: 10528379 [TBL] [Abstract][Full Text] [Related]
20. The influence of stimulus presentation rate on the cortical amplitude and latency of intraoperative somatosensory-evoked potential recordings in patients with varying degrees of spinal cord injury. Schubert A; Drummond JC; Garfin SR Spine (Phila Pa 1976); 1987 Dec; 12(10):969-73. PubMed ID: 3441823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]