BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 85532)

  • 41. Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat.
    Steininger TL; Alam MN; Gong H; Szymusiak R; McGinty D
    Brain Res; 1999 Sep; 840(1-2):138-47. PubMed ID: 10517961
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Response pattern of cat hippocampal neurons to stimulation of the septal area during sleep and waking.
    Kanamori N; Satoh T
    Physiol Behav; 1979 Aug; 23(2):363-8. PubMed ID: 228329
    [No Abstract]   [Full Text] [Related]  

  • 43. Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep.
    Lee MG; Hassani OK; Alonso A; Jones BE
    J Neurosci; 2005 Apr; 25(17):4365-9. PubMed ID: 15858062
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Activity of substantia nigra units across the sleep-waking cycle in freely moving cats.
    Trulson ME; Preussler DW; Howell GA
    Neurosci Lett; 1981 Oct; 26(2):183-8. PubMed ID: 7301205
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sleep patterns of the volcano mouse (Neotomodon alstoni alstoni).
    Ayala-Guerrero F; Vargas-Reyna L; Ramos JI; Mexicano G
    Physiol Behav; 1998 Jun; 64(4):577-80. PubMed ID: 9761235
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Activity of nucleus raphe pallidus neurons across the sleep-waking cycle in freely moving cats.
    Trulson ME; Trulson VM
    Brain Res; 1982 Apr; 237(1):232-7. PubMed ID: 7074357
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats.
    el Mansari M; Sakai K; Jouvet M
    Exp Brain Res; 1989; 76(3):519-29. PubMed ID: 2551709
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electroencephalogram power density and slow wave sleep as a function of prior waking and circadian phase.
    Dijk DJ; Brunner DP; Beersma DG; Borbély AA
    Sleep; 1990 Oct; 13(5):430-40. PubMed ID: 2287855
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Locus coeruleus neuronal activity during the sleep-waking cycle in mice.
    Takahashi K; Kayama Y; Lin JS; Sakai K
    Neuroscience; 2010 Sep; 169(3):1115-26. PubMed ID: 20542093
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modulation of unit activity in the amygdala of unrestrained cats during the sleep-waking cycle.
    Reich H; Rupprecht U; Stumpf H; Stock G
    Neurosci Lett; 1983 Feb; 35(2):209-14. PubMed ID: 6856196
    [No Abstract]   [Full Text] [Related]  

  • 51. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study.
    Braun AR; Balkin TJ; Wesenten NJ; Carson RE; Varga M; Baldwin P; Selbie S; Belenky G; Herscovitch P
    Brain; 1997 Jul; 120 ( Pt 7)():1173-97. PubMed ID: 9236630
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A quantitative study of electroencephalography, eye movements and neck electromyography characterizing the sleep-wake cycle of the guinea-pig.
    Escudero M; Vidal PP
    Eur J Neurosci; 1996 Mar; 8(3):572-80. PubMed ID: 8963449
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Mechanisms of dream-sleep-wakefulness cycle].
    Valatx JL
    Rev Prat; 1996 Dec; 46(20):2404-10. PubMed ID: 9035524
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sleep-waking discharge patterns of neurons recorded in the rat perifornical lateral hypothalamic area.
    Alam MN; Gong H; Alam T; Jaganath R; McGinty D; Szymusiak R
    J Physiol; 2002 Jan; 538(Pt 2):619-31. PubMed ID: 11790824
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study.
    Timofeev I; Grenier F; Steriade M
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1924-9. PubMed ID: 11172052
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking.
    Vazquez J; Baghdoyan HA
    Am J Physiol Regul Integr Comp Physiol; 2001 Feb; 280(2):R598-601. PubMed ID: 11208592
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Respiratory-related activity in hypoglossal neurons across sleep-waking states in cats.
    Richard CA; Harper RM
    Brain Res; 1991 Feb; 542(1):167-70. PubMed ID: 2054655
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Neuronal activity of the cat visual cortex during the sleep--wakefulness cycle].
    Mukhametov LM; Strokova IG
    Neirofiziologiia; 1976; 8(4):343-50. PubMed ID: 822359
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spontaneous activity of single neurones in the hypothalamus of rabbits during sleep and waking.
    Findlay AL; Hayward JN
    J Physiol; 1969 Mar; 201(1):237-58. PubMed ID: 4304342
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The fasciculus retroflexus controls the integrity of REM sleep by supporting the generation of hippocampal theta rhythm and rapid eye movements in rats.
    Valjakka A; Vartiainen J; Tuomisto L; Tuomisto JT; Olkkonen H; Airaksinen MM
    Brain Res Bull; 1998 Sep; 47(2):171-84. PubMed ID: 9820735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.