These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 855408)

  • 41. Shoulder joint loadings in post total hip replacement surgery patients during assisted walking: The influence of the crutch setup.
    Freddolini M; Esposito F; Latella L; Marcucci M; Corvi A
    J Biomech; 2018 Apr; 72():46-52. PubMed ID: 29510857
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Morphological and biomechanical analysis of a skeleton from Roman imperial necropolis of Casalecchio di Reno (Bologna, Italy, II-III c. A. D.). A possible case of crutch use.
    Belcastro MG; Mariotti V
    Coll Antropol; 2000 Dec; 24(2):529-39. PubMed ID: 11216421
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gait analysis before or after varus osteotomy of the femur for hip osteoarthritis.
    Watanabe H; Shimada Y; Sato K; Tsutsumi Y; Sato M
    Biomed Mater Eng; 1998; 8(3-4):177-86. PubMed ID: 10065884
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assessment of hip protectors and corresponding hip fracture risk using stress calculation in the femoral neck.
    Spierings AB; Derler S
    Med Eng Phys; 2006 Jul; 28(6):550-9. PubMed ID: 16275044
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of cane on variables of gait for patients with hip disorders.
    Ely DD; Smidt GL
    Phys Ther; 1977 May; 57(5):507-12. PubMed ID: 850694
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On hip and lumbar biomechanics. A study of joint load and muscular activity.
    Németh G
    Scand J Rehabil Med Suppl; 1984; 10():1-35. PubMed ID: 6390670
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Force measurement device for canes and crutches.
    Cochran GV; Gand R; Blossom B
    Arch Phys Med Rehabil; 1973 Jan; 54(1):43-4 passim. PubMed ID: 4689532
    [No Abstract]   [Full Text] [Related]  

  • 48. Trochanteric transfer in total hip replacement: effects on the moment arms and force-generating capacities of the hip abductors.
    Free SA; Delp SL
    J Orthop Res; 1996 Mar; 14(2):245-50. PubMed ID: 8648502
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Forces and impulses during aided gait.
    Opila KA; Nicol AC; Paul JP
    Arch Phys Med Rehabil; 1987 Oct; 68(10):715-22. PubMed ID: 3662781
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body.
    Majumder S; Roychowdhury A; Pal S
    Med Eng Phys; 2007 Dec; 29(10):1167-78. PubMed ID: 17270483
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Treatment of trochanteric fractures by percutaneous compression plate].
    Skládal M; Pink M; Lisý M; Novotný L
    Acta Chir Orthop Traumatol Cech; 2009 Jun; 76(3):202-7. PubMed ID: 19595281
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of a polymer damper on swing-through crutch gait biomechanics.
    MacGillivray MK; Manocha RH; Sawatzky B
    Med Eng Phys; 2016 Mar; 38(3):275-9. PubMed ID: 26852356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biofeedback device for patients on axillary crutches.
    Ang EJ; Goh JC; Bose K; Toh SL; Choo A
    Arch Phys Med Rehabil; 1989 Aug; 70(8):644-7. PubMed ID: 2764696
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reduction in ulnar pressure distribution when walking with forearm crutches with a novel cuff design: Cross-sectional intervention study on the biomechanical efficacy of an ulnar recess.
    Molteni P; Hügle T; Hügle M; Nüesch C; Mündermann A
    Assist Technol; 2018; 30(1):34-38. PubMed ID: 27717292
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mobility devices.
    Farmer LW
    Bull Prosthet Res; 1978; ():47-118. PubMed ID: 728669
    [No Abstract]   [Full Text] [Related]  

  • 56. Optimization of spring-loaded crutches via boundary value problem.
    Liu G; ShaneXie SQ; Zhang Y
    IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):64-70. PubMed ID: 20519159
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Guide-arm cane: a walking cane modification.
    Schmerl EF; Stein M; Schultz P
    Arch Phys Med Rehabil; 1979 Feb; 60(2):83-5. PubMed ID: 464775
    [No Abstract]   [Full Text] [Related]  

  • 58. In vivo hip pressures during cane and load-carrying gait.
    McGibbon CA; Krebs DE; Mann RW
    Arthritis Care Res; 1997 Oct; 10(5):300-7. PubMed ID: 9362596
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Walking with walking aids. III. Control and training of partial weightbearing by means of instrumented crutches (author's transl)].
    Bergmann G; Kölbel R; Rohlmann A; Rauschenbach N
    Z Orthop Ihre Grenzgeb; 1979 Jun; 117(3):293-300. PubMed ID: 463220
    [No Abstract]   [Full Text] [Related]  

  • 60. Forearm pressure distribution during ambulation with elbow crutches: a cross-sectional study.
    Fischer J; Nüesch C; Göpfert B; Mündermann A; Valderrabano V; Hügle T
    J Neuroeng Rehabil; 2014 Apr; 11():61. PubMed ID: 24731773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.