BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 8554516)

  • 1. Sugar-dependent expression of the fructose transporter GLUT5 in Caco-2 cells.
    Mesonero J; Matosin M; Cambier D; Rodriguez-Yoldi MJ; Brot-Laroche E
    Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):757-62. PubMed ID: 8554516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption.
    Patel C; Douard V; Yu S; Gao N; Ferraris RP
    FASEB J; 2015 Sep; 29(9):4046-58. PubMed ID: 26071406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenolics-Rich Extracts of Dietary Plants as Regulators of Fructose Uptake in Caco-2 Cells via GLUT5 Involvement.
    Zakłos-Szyda M; Pietrzyk N; Kowalska-Baron A; Nowak A; Chałaśkiewicz K; Ratajewski M; Budryn G; Koziołkiewicz M
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of dietary fructose on portal and systemic serum fructose levels in rats and in KHK-/- and GLUT5-/- mice.
    Patel C; Sugimoto K; Douard V; Shah A; Inui H; Yamanouchi T; Ferraris RP
    Am J Physiol Gastrointest Liver Physiol; 2015 Nov; 309(9):G779-90. PubMed ID: 26316589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GLUT5: structure, functions, diseases and potential applications.
    Song A; Mao Y; Wei H
    Acta Biochim Biophys Sin (Shanghai); 2023 Oct; 55(10):1519-1538. PubMed ID: 37674366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Glucose Transporter 5 Enhances CAR-T Cell Metabolic Function and Anti-tumour Durability.
    O'Connor R; Valentić B; Kelly A; Shestov A; Gan Z; Shen F; Chatoff A; Jaccard A; Crispim C; Scholler J; Heeke S; Snyder N; Ghassemi S; Jones N; Gill S
    Res Sq; 2024 May; ():. PubMed ID: 38766088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GLUT5 (SLC2A5) enables fructose-mediated proliferation independent of ketohexokinase.
    Liang RJ; Taylor S; Nahiyaan N; Song J; Murphy CJ; Dantas E; Cheng S; Hsu TW; Ramsamooj S; Grover R; Hwang SK; Ngo B; Cantley LC; Rhee KY; Goncalves MD
    Cancer Metab; 2021 Mar; 9(1):12. PubMed ID: 33762003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early life high fructose exposure disrupts microglia function and impedes neurodevelopment.
    Wang Z; Lipshutz A; Liu ZL; Trzeciak AJ; Miranda IC; Martínez de la Torre C; Schild T; Lazarov T; Rojas WS; Saavedra PHV; Romero-Pichardo JE; Baako A; Geissmann F; Faraco G; Gan L; Etchegaray JI; Lucas CD; Parkhurst CN; Zeng MY; Keshari KR; Perry JSA
    bioRxiv; 2023 Aug; ():. PubMed ID: 37645894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turn-on Rhodamine Glycoconjugates Enable Real-Time GLUT Activity Monitoring in Live Cells and In Vivo.
    Nyansa MMS; Oronova A; Gora N; Geborkoff MR; Ostlund NR; Fritz DR; Werner T; Tanasova M
    Chem Biomed Imaging; 2023 Oct; 1(7):637-647. PubMed ID: 37873027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress on Fructose Metabolism-Chrebp, Fructolysis, and Polyol Pathway.
    Iizuka K
    Nutrients; 2023 Apr; 15(7):. PubMed ID: 37049617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene variants of the SLC2A5 gene encoding GLUT5, the major fructose transporter, do not contribute to clinical presentation of acquired fructose malabsorption.
    Taneva I; Grumann D; Schmidt D; Taneva E; von Arnim U; Ansorge T; Wex T
    BMC Gastroenterol; 2022 Apr; 22(1):167. PubMed ID: 35387598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting purine synthesis in ASS1-expressing tumors enhances the response to immune checkpoint inhibitors.
    Keshet R; Lee JS; Adler L; Iraqi M; Ariav Y; Lim LQJ; Lerner S; Rabinovich S; Oren R; Katzir R; Weiss Tishler H; Stettner N; Goldman O; Landesman H; Galai S; Kuperman Y; Kuznetsov Y; Brandis A; Mehlman T; Malitsky S; Itkin M; Koehler SE; Zhao Y; Talsania K; Shen TW; Peled N; Ulitsky I; Porgador A; Ruppin E; Erez A
    Nat Cancer; 2020 Sep; 1(9):894-908. PubMed ID: 35121952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the Fructose Transporter Gene
    Mizuno TM; Lew PS; Jhanji G
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism-Driven High-Throughput Cancer Identification with GLUT5-Specific Molecular Probes.
    Kannan S; Begoyan VV; Fedie JR; Xia S; Weseliński ŁJ; Tanasova M; Rao S
    Biosensors (Basel); 2018 Apr; 8(2):. PubMed ID: 29642606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the fructose transporter GLUT5 in health and disease.
    Douard V; Ferraris RP
    Am J Physiol Endocrinol Metab; 2008 Aug; 295(2):E227-37. PubMed ID: 18398011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fructose metabolism in the cerebellum.
    Funari VA; Crandall JE; Tolan DR
    Cerebellum; 2007; 6(2):130-40. PubMed ID: 17510913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fructose transport and metabolism in adipose tissue of Zucker rats: diminished GLUT5 activity during obesity and insulin resistance.
    Litherland GJ; Hajduch E; Gould GW; Hundal HS
    Mol Cell Biochem; 2004 Jun; 261(1-2):23-33. PubMed ID: 15362482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fructose modulates GLUT5 mRNA stability in differentiated Caco-2 cells: role of cAMP-signalling pathway and PABP (polyadenylated-binding protein)-interacting protein (Paip) 2.
    Gouyon F; Onesto C; Dalet V; Pages G; Leturque A; Brot-Laroche E
    Biochem J; 2003 Oct; 375(Pt 1):167-74. PubMed ID: 12820898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of high-affinity ligands and photoaffinity labels for the D-fructose transporter GLUT5.
    Yang J; Dowden J; Tatibouët A; Hatanaka Y; Holman GD
    Biochem J; 2002 Oct; 367(Pt 2):533-9. PubMed ID: 12119043
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.