These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 8554516)
21. Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension. Barone S; Fussell SL; Singh AK; Lucas F; Xu J; Kim C; Wu X; Yu Y; Amlal H; Seidler U; Zuo J; Soleimani M J Biol Chem; 2009 Feb; 284(8):5056-66. PubMed ID: 19091748 [TBL] [Abstract][Full Text] [Related]
22. Sucrase-isomaltase and hexose transporter gene expressions are coordinately enhanced by dietary fructose in rat jejunum. Kishi K; Tanaka T; Igawa M; Takase S; Goda T J Nutr; 1999 May; 129(5):953-6. PubMed ID: 10222385 [TBL] [Abstract][Full Text] [Related]
23. Cyclic AMP stimulates fructose transport in neonatal rat small intestine. Cui XL; Ananian C; Perez E; Strenger A; Beuve AV; Ferraris RP J Nutr; 2004 Jul; 134(7):1697-703. PubMed ID: 15226456 [TBL] [Abstract][Full Text] [Related]
25. Presence and differential expression of SGLT1, GLUT1, GLUT2, GLUT3 and GLUT5 hexose-transporter mRNAs in Caco-2 cell clones in relation to cell growth and glucose consumption. Mahraoui L; Rodolosse A; Barbat A; Dussaulx E; Zweibaum A; Rousset M; Brot-Laroche E Biochem J; 1994 Mar; 298 Pt 3(Pt 3):629-33. PubMed ID: 8141777 [TBL] [Abstract][Full Text] [Related]
26. Fructose transport and metabolism in adipose tissue of Zucker rats: diminished GLUT5 activity during obesity and insulin resistance. Litherland GJ; Hajduch E; Gould GW; Hundal HS Mol Cell Biochem; 2004 Jun; 261(1-2):23-33. PubMed ID: 15362482 [TBL] [Abstract][Full Text] [Related]
27. Fructose-responsive genes in the small intestine of neonatal rats. Cui XL; Soteropoulos P; Tolias P; Ferraris RP Physiol Genomics; 2004 Jul; 18(2):206-17. PubMed ID: 15150374 [TBL] [Abstract][Full Text] [Related]
28. Dietary fructose enhances intestinal fructose transport and GLUT5 expression in weaning rats. Shu R; David ES; Ferraris RP Am J Physiol; 1997 Mar; 272(3 Pt 1):G446-53. PubMed ID: 9124564 [TBL] [Abstract][Full Text] [Related]
29. Fructose uptake in rat adipocytes: GLUT5 expression and the effects of streptozotocin-induced diabetes. Hajduch E; Darakhshan F; Hundal HS Diabetologia; 1998 Jul; 41(7):821-8. PubMed ID: 9686924 [TBL] [Abstract][Full Text] [Related]
30. Fructose transporter in human spermatozoa and small intestine is GLUT5. Burant CF; Takeda J; Brot-Laroche E; Bell GI; Davidson NO J Biol Chem; 1992 Jul; 267(21):14523-6. PubMed ID: 1634504 [TBL] [Abstract][Full Text] [Related]
31. Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metabolism. Le Gall M; Tobin V; Stolarczyk E; Dalet V; Leturque A; Brot-Laroche E J Cell Physiol; 2007 Dec; 213(3):834-43. PubMed ID: 17786952 [TBL] [Abstract][Full Text] [Related]
32. Effects of type-2 diabetes and troglitazone on the expression patterns of small intestinal sugar transporters and PPAR-gamma in the Zucker diabetic fatty rat. Corpe C; Sreenan S; Burant C Digestion; 2001; 63(2):116-23. PubMed ID: 11244250 [TBL] [Abstract][Full Text] [Related]
33. Engineering cell metabolism for high-density cell culture via manipulation of sugar transport. Wlaschin KF; Hu WS J Biotechnol; 2007 Aug; 131(2):168-76. PubMed ID: 17662499 [TBL] [Abstract][Full Text] [Related]
34. Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway. Cui XL; Schlesier AM; Fisher EL; Cerqueira C; Ferraris RP Am J Physiol Gastrointest Liver Physiol; 2005 Jun; 288(6):G1310-20. PubMed ID: 15691865 [TBL] [Abstract][Full Text] [Related]
35. Molecular Imaging of GLUT1 and GLUT5 in Breast Cancer: A Multitracer Positron Emission Tomography Imaging Study in Mice. Wuest M; Hamann I; Bouvet V; Glubrecht D; Marshall A; Trayner B; Soueidan OM; Krys D; Wagner M; Cheeseman C; West F; Wuest F Mol Pharmacol; 2018 Feb; 93(2):79-89. PubMed ID: 29142019 [TBL] [Abstract][Full Text] [Related]
36. Age-associated changes in intestinal fructose uptake are not explained by alterations in the abundance of GLUT5 or GLUT2. Drozdowski LA; Woudstra TD; Wild GE; Clandinin MT; Thomson AB J Nutr Biochem; 2004 Oct; 15(10):630-7. PubMed ID: 15542355 [TBL] [Abstract][Full Text] [Related]
37. Human erythrocytes express GLUT5 and transport fructose. Concha II; Velásquez FV; Martínez JM; Angulo C; Droppelmann A; Reyes AM; Slebe JC; Vera JC; Golde DW Blood; 1997 Jun; 89(11):4190-5. PubMed ID: 9166863 [TBL] [Abstract][Full Text] [Related]
38. Cloning and functional characterization of the mouse fructose transporter, GLUT5. Corpe CP; Bovelander FJ; Munoz CM; Hoekstra JH; Simpson IA; Kwon O; Levine M; Burant CF Biochim Biophys Acta; 2002 Jun; 1576(1-2):191-7. PubMed ID: 12031501 [TBL] [Abstract][Full Text] [Related]
39. GLUT5 expression and fructose transport in human skeletal muscle. Hundal HS; Darakhshan F; Kristiansen S; Blakemore SJ; Richter EA Adv Exp Med Biol; 1998; 441():35-45. PubMed ID: 9781312 [TBL] [Abstract][Full Text] [Related]
40. Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars. Miyamoto K; Hase K; Takagi T; Fujii T; Taketani Y; Minami H; Oka T; Nakabou Y Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):211-5. PubMed ID: 8216218 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]