These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 8555163)

  • 1. Covalent attachment of Arc repressor subunits by a peptide linker enhances affinity for operator DNA.
    Robinson CR; Sauer RT
    Biochemistry; 1996 Jan; 35(1):109-16. PubMed ID: 8555163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equilibrium stability and sub-millisecond refolding of a designed single-chain Arc repressor.
    Robinson CR; Sauer RT
    Biochemistry; 1996 Nov; 35(44):13878-84. PubMed ID: 8909284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-chain lambda Cro repressors confirm high intrinsic dimer-DNA affinity.
    Jana R; Hazbun TR; Fields JD; Mossing MC
    Biochemistry; 1998 May; 37(18):6446-55. PubMed ID: 9572862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P22 Arc repressor: role of cooperativity in repression and binding to operators with altered half-site spacing.
    Smith TL; Sauer RT
    J Mol Biol; 1995 Jun; 249(4):729-42. PubMed ID: 7602585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arc repressor-operator DNA interactions and contribution of Phe10 to binding specificity.
    Dostál L; Misselwitz R; Welfle H
    Biochemistry; 2005 Jun; 44(23):8387-96. PubMed ID: 15938628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carboxyl-terminal domain dimer interface mutant 434 repressors have altered dimerization and DNA binding specificities.
    Donner AL; Paa K; Koudelka GB
    J Mol Biol; 1998 Nov; 283(5):931-46. PubMed ID: 9799634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA recognition by beta-sheets in the Arc repressor-operator crystal structure.
    Raumann BE; Rould MA; Pabo CO; Sauer RT
    Nature; 1994 Feb; 367(6465):754-7. PubMed ID: 8107872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repertoire selection of variant single-chain Cro: toward directed DNA-binding specificity of helix-turn-helix proteins.
    Nilsson MT; Widersten M
    Biochemistry; 2004 Sep; 43(38):12038-47. PubMed ID: 15379544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the physical basis for trp repressor-operator recognition.
    Grillo AO; Brown MP; Royer CA
    J Mol Biol; 1999 Apr; 287(3):539-54. PubMed ID: 10092458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy coupling between DNA binding and subunit association is responsible for the specificity of DNA-Arc interaction.
    Silva JL; Silveira CF
    Protein Sci; 1993 Jun; 2(6):945-50. PubMed ID: 8318899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An aromatic stacking interaction between subunits helps mediate DNA sequence specificity: operator site discrimination by phage lambda cI repressor.
    Huang YT; Rusinova E; Ross JB; Senear DF
    J Mol Biol; 1997 Mar; 267(2):403-17. PubMed ID: 9096234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation.
    Backes H; Berens C; Helbl V; Walter S; Schmid FX; Hillen W
    Biochemistry; 1997 May; 36(18):5311-22. PubMed ID: 9154913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction with DNA of oligopeptides related to the Arc repressor.
    Helbecque N; el Idrissi Boutaher A; Hénichart JP
    Pept Res; 1996; 9(1):21-7. PubMed ID: 8727480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined conformational search and finite-difference Poisson-Boltzmann approach for flexible docking. Application to an operator mutation in the lambda repressor-operator complex.
    Zacharias M; Luty BA; Davis ME; McCammon JA
    J Mol Biol; 1994 May; 238(3):455-65. PubMed ID: 8176736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evolutionary bridge to a new protein fold.
    Cordes MH; Burton RE; Walsh NP; McKnight CJ; Sauer RT
    Nat Struct Biol; 2000 Dec; 7(12):1129-32. PubMed ID: 11101895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutual stabilisation of bacteriophage Mu repressor and histone-like proteins in a nucleoprotein structure.
    Betermier M; Rousseau P; Alazard R; Chandler M
    J Mol Biol; 1995 Jun; 249(2):332-41. PubMed ID: 7783197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR structure and functional studies of the Mu repressor DNA-binding domain.
    Ilangovan U; Wojciak JM; Connolly KM; Clubb RT
    Biochemistry; 1999 Jun; 38(26):8367-76. PubMed ID: 10387082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and analysis of arc repressor mutants: evidence for an unusual mechanism of DNA binding.
    Vershon AK; Bowie JU; Karplus TM; Sauer RT
    Proteins; 1986 Dec; 1(4):302-11. PubMed ID: 3449859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The solution structure and dynamics of an Arc repressor mutant reveal premelting conformational changes related to DNA binding.
    Nooren IM; Rietveld AW; Melacini G; Sauer RT; Kaptein R; Boelens R
    Biochemistry; 1999 May; 38(19):6035-42. PubMed ID: 10320329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties.
    Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V
    J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.