BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8555187)

  • 1. Cyclic AMP-dependent phosphoprotein components I and II interact with beta gamma subunits of transducin in frog rod outer segments.
    Suh KH; Hamm HE
    Biochemistry; 1996 Jan; 35(1):290-8. PubMed ID: 8555187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of retinal cGMP cascade by phosducin in bovine rod photoreceptor cells. Interaction of phosducin and transducin.
    Lee RH; Ting TD; Lieberman BS; Tobias DE; Lolley RN; Ho YK
    J Biol Chem; 1992 Dec; 267(35):25104-12. PubMed ID: 1334080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical cross-linking of bovine retinal transducin and cGMP phosphodiesterase.
    Hingorani VN; Tobias DT; Henderson JT; Ho YK
    J Biol Chem; 1988 May; 263(14):6916-26. PubMed ID: 2834396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation by light of cyclic nucleotide-dependent protein kinases and their substrates in frog rod outer segments.
    Hamm H
    J Gen Physiol; 1990 Mar; 95(3):545-67. PubMed ID: 2157794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta gamma-subunit of bovine transducin composed of two components with distinctive gamma-subunits.
    Fukada Y; Ohguro H; Saito T; Yoshizawa T; Akino T
    J Biol Chem; 1989 Apr; 264(10):5937-43. PubMed ID: 2925642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneity of the retinal G-protein transducin from frog rod photoreceptors. Biochemical identification and characterization of new subunits.
    Umbarger KO; Yamazaki M; Hutson LD; Hayashi F; Yamazaki A
    J Biol Chem; 1992 Sep; 267(27):19494-502. PubMed ID: 1326554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transducin inhibition of light-dependent rhodopsin phosphorylation: evidence for beta gamma subunit interaction with rhodopsin.
    Kelleher DJ; Johnson GL
    Mol Pharmacol; 1988 Oct; 34(4):452-60. PubMed ID: 3050446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodopsin/transducin interactions. II. Influence of the transducin-beta gamma subunit complex on the coupling of the transducin-alpha subunit to rhodopsin.
    Phillips WJ; Wong SC; Cerione RA
    J Biol Chem; 1992 Aug; 267(24):17040-6. PubMed ID: 1512243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein kinase C-mediated phosphorylation of retinal rod outer segment membrane proteins.
    Sagi-Eisenberg R; Traub LM; Spiegel AM; Zick Y
    Cell Signal; 1989; 1(5):519-31. PubMed ID: 2641684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatidylinositol-stimulated phosphorylation of an inhibitory subunit of cGMP phosphodiesterase in vertebrate rod photoreceptors.
    Hayashi F; Lin GY; Matsumoto H; Yamazaki A
    Proc Natl Acad Sci U S A; 1991 May; 88(10):4333-7. PubMed ID: 1852003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of connexin 32, a hepatocyte gap-junction protein, by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II.
    Sáez JC; Nairn AC; Czernik AJ; Spray DC; Hertzberg EL; Greengard P; Bennett MV
    Eur J Biochem; 1990 Sep; 192(2):263-73. PubMed ID: 2170122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sites of interaction in the complex between beta- and gamma-subunits of transducin.
    Bubis J; Khorana HG
    J Biol Chem; 1990 Aug; 265(22):12995-9. PubMed ID: 2115886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the 17-kDa prenyl-binding protein as a regulatory protein for phototransduction in retinal photoreceptors.
    Norton AW; Hosier S; Terew JM; Li N; Dhingra A; Vardi N; Baehr W; Cote RH
    J Biol Chem; 2005 Jan; 280(2):1248-56. PubMed ID: 15504722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific phosphorylation of a COOH-terminal site on the full-length form of the alpha 1 subunit of the skeletal muscle calcium channel by cAMP-dependent protein kinase.
    Rotman EI; De Jongh KS; Florio V; Lai Y; Catterall WA
    J Biol Chem; 1992 Aug; 267(23):16100-5. PubMed ID: 1322891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatidic acid and polyphosphoinositide metabolism in rod outer segments. Differential role of soluble and peripheral proteins.
    Ilincheta de Boschero MG; Giusto NM
    Biochim Biophys Acta; 1992 Jul; 1127(2):105-15. PubMed ID: 1322705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The photoreceptor-specific 33 kDa phosphoprotein of mammalian retina: generation of monospecific antibodies and localization by immunocytochemistry.
    Lee RH; Whelan JP; Lolley RN; McGinnis JF
    Exp Eye Res; 1988 Jun; 46(6):829-40. PubMed ID: 2461862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic nucleotide-dependent phosphorylation of proteins in rod outer segments in frog retina. Characteristics of the phosphorylated proteins and their dephosphorylation.
    Shinozawa T; Yoshizawa T
    J Biol Chem; 1986 Jan; 261(1):216-23. PubMed ID: 3001049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pineal transduction. Adrenergic----cyclic AMP-dependent phosphorylation of cytoplasmic 33-kDa protein (MEKA) which binds beta gamma-complex of transducin.
    Reig JA; Yu L; Klein DC
    J Biol Chem; 1990 Apr; 265(10):5816-24. PubMed ID: 2156830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin-like growth factor I receptors in retinal rod outer segments.
    Zick Y; Spiegel AM; Sagi-Eisenberg R
    J Biol Chem; 1987 Jul; 262(21):10259-64. PubMed ID: 2956255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinase A phosphorylates retinal phosducin on serine 73 in situ.
    Lee RH; Brown BM; Lolley RN
    J Biol Chem; 1990 Sep; 265(26):15860-6. PubMed ID: 2394752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.