These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 8555202)

  • 1. Interpretation of transient-state kinetic isotope effects.
    Fisher HF; Saha SK
    Biochemistry; 1996 Jan; 35(1):83-8. PubMed ID: 8555202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interpretation of multiple-step transient-state kinetic isotope effects.
    Maniscalco SJ; Tally JF; Fisher HF
    Arch Biochem Biophys; 2004 May; 425(2):165-72. PubMed ID: 15111124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic interpretation of tryptophan fluorescence quenching in the time courses of glutamate dehydrogenase catalyzed reactions.
    Saha SK; Maniscalco SJ; Fisher HF
    Biochemistry; 1996 Dec; 35(51):16483-8. PubMed ID: 8987981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydride transfer catalyzed by xylose isomerase: mechanism and quantum effects.
    Garcia-Viloca M; Alhambra C; Truhlar DG; Gao J
    J Comput Chem; 2003 Jan; 24(2):177-90. PubMed ID: 12497598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase.
    Garcia-Viloca M; Truhlar DG; Gao J
    Biochemistry; 2003 Nov; 42(46):13558-75. PubMed ID: 14622003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational study of the effect of bending on secondary kinetic isotope effects in SN2 transition states.
    Hasanayn F; Streitwieser A; Al-Rifai R
    J Am Chem Soc; 2005 Feb; 127(7):2249-55. PubMed ID: 15713103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient-state kinetic approach to mechanisms of enzymatic catalysis.
    Fisher HF
    Acc Chem Res; 2005 Mar; 38(3):157-66. PubMed ID: 15766234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydride reduction of NAD+ analogues by isopropyl alcohol: kinetics, deuterium isotope effects and mechanism.
    Lu Y; Qu F; Moore B; Endicott D; Kuester W
    J Org Chem; 2008 Jul; 73(13):4763-70. PubMed ID: 18543993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A difference in the sequence of steps in the reactions catalyzed by two closely homologous forms of glutamate dehydrogenase.
    Maniscalco SJ; Saha SK; Vicedomine P; Fisher HF
    Biochemistry; 1996 Jan; 35(1):89-94. PubMed ID: 8555203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics and kinetics of radical pairs in reaction centers from Rhodobacter sphaeroides. A femtosecond transient absorption study.
    Holzwarth AR; Müller MG
    Biochemistry; 1996 Sep; 35(36):11820-31. PubMed ID: 8794764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and hydride transfer mechanism of a moderate thermophilic dihydrofolate reductase from Bacillus stearothermophilus and comparison to its mesophilic and hyperthermophilic homologues.
    Kim HS; Damo SM; Lee SY; Wemmer D; Klinman JP
    Biochemistry; 2005 Aug; 44(34):11428-39. PubMed ID: 16114879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of isotope effects to determine enzyme mechanisms.
    Cleland WW
    Arch Biochem Biophys; 2005 Jan; 433(1):2-12. PubMed ID: 15581561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between the time-dependence of a transient-state kinetic isotope effect and the location of complexes in a reaction sequence.
    Fisher HF; Palfey BA; Maniscalco SJ; Indyk L
    J Phys Chem A; 2006 Apr; 110(13):4465-72. PubMed ID: 16571051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A theoretical analysis of rate constants and kinetic isotope effects corresponding to different reactant valleys in lactate dehydrogenase.
    Ferrer S; Tuñón I; Martí S; Moliner V; Garcia-Viloca M; Gonzalez-Lafont A; Lluch JM
    J Am Chem Soc; 2006 Dec; 128(51):16851-63. PubMed ID: 17177436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and kinetic reaction mechanisms of quinohemoprotein amine dehydrogenase from Paracoccus denitrificans.
    Sun D; Ono K; Okajima T; Tanizawa K; Uchida M; Yamamoto Y; Mathews FS; Davidson VL
    Biochemistry; 2003 Sep; 42(37):10896-903. PubMed ID: 12974623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion and origin of normal and abnormal temperature dependences of kinetic isotope effect in hydride transfer reactions.
    Zhu XQ; Li XT; Han SH; Mei LR
    J Org Chem; 2012 May; 77(10):4774-83. PubMed ID: 22524236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.