BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 8555225)

  • 1. Selected cysteine point mutations confer mercurial sensitivity to the mercurial-insensitive water channel MIWC/AQP-4.
    Shi LB; Verkman AS
    Biochemistry; 1996 Jan; 35(2):538-44. PubMed ID: 8555225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury-sensitive residues and pore site in AQP3 water channel.
    Kuwahara M; Gu Y; Ishibashi K; Marumo F; Sasaki S
    Biochemistry; 1997 Nov; 36(46):13973-8. PubMed ID: 9369468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A point mutation at cysteine 189 blocks the water permeability of rat kidney water channel CHIP28k.
    Zhang R; van Hoek AN; Biwersi J; Verkman AS
    Biochemistry; 1993 Mar; 32(12):2938-41. PubMed ID: 8457558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cDNA cloning and gene structure of a novel water channel expressed exclusively in human kidney: evidence for a gene cluster of aquaporins at chromosome locus 12q13.
    Ma T; Yang B; Kuo WL; Verkman AS
    Genomics; 1996 Aug; 35(3):543-50. PubMed ID: 8812490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct biogenesis mechanisms for the water channels MIWC and CHIP28 at the endoplasmic reticulum.
    Shi LB; Skach WR; Ma T; Verkman AS
    Biochemistry; 1995 Jul; 34(26):8250-6. PubMed ID: 7541239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type mutant heterodimers.
    Shi LB; Skach WR; Verkman AS
    J Biol Chem; 1994 Apr; 269(14):10417-22. PubMed ID: 7511600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues.
    Hasegawa H; Ma T; Skach W; Matthay MA; Verkman AS
    J Biol Chem; 1994 Feb; 269(8):5497-500. PubMed ID: 7509789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of the mercurial sensitivity of a frog urea transporter (fUT).
    Stewart GS; Smith CP; Cooper GJ
    Am J Physiol Renal Physiol; 2006 Jun; 290(6):F1437-42. PubMed ID: 16380458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning of a novel water and urea-permeable aquaporin from mouse expressed strongly in colon, placenta, liver, and heart.
    Ma T; Yang B; Verkman AS
    Biochem Biophys Res Commun; 1997 Nov; 240(2):324-8. PubMed ID: 9388476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cultured bovine corneal epithelial cells express a functional aquaporin water channel.
    Kang F; Kuang K; Li J; Fischbarg J
    Invest Ophthalmol Vis Sci; 1999 Jan; 40(1):253-7. PubMed ID: 9888453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Very high single channel water permeability of aquaporin-4 in baculovirus-infected insect cells and liposomes reconstituted with purified aquaporin-4.
    Yang B; van Hoek AN; Verkman AS
    Biochemistry; 1997 Jun; 36(24):7625-32. PubMed ID: 9200715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel.
    Preston GM; Jung JS; Guggino WB; Agre P
    J Biol Chem; 1993 Jan; 268(1):17-20. PubMed ID: 7677994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and cellular characterization of a water-channel protein, AQP-h3, specifically expressed in the frog ventral skin.
    Tanii H; Hasegawa T; Hirakawa N; Suzuki M; Tanaka S
    J Membr Biol; 2002 Jul; 188(1):43-53. PubMed ID: 12172646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cAMP-dependent phosphorylation stimulates water permeability of aquaporin-collecting duct water channel protein expressed in Xenopus oocytes.
    Kuwahara M; Fushimi K; Terada Y; Bai L; Marumo F; Sasaki S
    J Biol Chem; 1995 May; 270(18):10384-7. PubMed ID: 7537730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells.
    Yang B; Brown D; Verkman AS
    J Biol Chem; 1996 Mar; 271(9):4577-80. PubMed ID: 8617713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes.
    Frigeri A; Gropper MA; Turck CW; Verkman AS
    Proc Natl Acad Sci U S A; 1995 May; 92(10):4328-31. PubMed ID: 7538665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and characterization of lacrimal gland water channels in Xenopus oocytes.
    Ishida N; Maruo J; Mita S
    Biochem Biophys Res Commun; 1996 Jul; 224(1):1-4. PubMed ID: 8694793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of aquaporin-1 water permeability by tetraethylammonium: involvement of the loop E pore region.
    Brooks HL; Regan JW; Yool AJ
    Mol Pharmacol; 2000 May; 57(5):1021-6. PubMed ID: 10779387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of the mercury-sensitive cysteine on function and routing of AQP1 and AQP2 in oocytes.
    Mulders SM; Rijss JP; Hartog A; Bindels RJ; van Os CH; Deen PM
    Am J Physiol; 1997 Sep; 273(3 Pt 2):F451-6. PubMed ID: 9321919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mercury chloride decreases the water permeability of aquaporin-4-reconstituted proteoliposomes.
    Yukutake Y; Tsuji S; Hirano Y; Adachi T; Takahashi T; Fujihara K; Agre P; Yasui M; Suematsu M
    Biol Cell; 2008 Jun; 100(6):355-63. PubMed ID: 18167118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.