These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 8555238)
41. Reduction of an aldehyde by a NADH/Zn2+ -dependent redox active ribozyme. Tsukiji S; Pattnaik SB; Suga H J Am Chem Soc; 2004 Apr; 126(16):5044-5. PubMed ID: 15099068 [TBL] [Abstract][Full Text] [Related]
42. Substitution of cysteine-153 ligated to the catalytic zinc in yeast alcohol dehydrogenase with aspartic acid and analysis of mechanisms of related medium chain dehydrogenases. Kim K; Plapp BV Chem Biol Interact; 2019 Apr; 302():172-182. PubMed ID: 30721696 [TBL] [Abstract][Full Text] [Related]
43. Structural study of a single-point mutant of Sulfolobus solfataricus alcohol dehydrogenase with enhanced activity. Esposito L; Bruno I; Sica F; Raia CA; Giordano A; Rossi M; Mazzarella L; Zagari A FEBS Lett; 2003 Mar; 539(1-3):14-8. PubMed ID: 12650918 [TBL] [Abstract][Full Text] [Related]
44. Deprotonation of the horse liver alcohol dehydrogenase-NAD+ complex controls formation of the ternary complexes. Kovaleva EG; Plapp BV Biochemistry; 2005 Sep; 44(38):12797-808. PubMed ID: 16171395 [TBL] [Abstract][Full Text] [Related]
45. Examination of subunit interaction in human ADH: carboxymethylation of the heterodimer beta 2 gamma 1. Gong WP; Keung WM Biochem Int; 1991 Jun; 24(3):451-60. PubMed ID: 1772423 [TBL] [Abstract][Full Text] [Related]
46. Structure and function in yeast alcohol dehydrogenases. Plapp BV; Ganzhorn AJ; Gould RM; Green DW; Hershey AD Prog Clin Biol Res; 1987; 232():227-36. PubMed ID: 3303037 [TBL] [Abstract][Full Text] [Related]
47. Structure, conformational stability, and enzymatic properties of acylphosphatase from the hyperthermophile Sulfolobus solfataricus. Corazza A; Rosano C; Pagano K; Alverdi V; Esposito G; Capanni C; Bemporad F; Plakoutsi G; Stefani M; Chiti F; Zuccotti S; Bolognesi M; Viglino P Proteins; 2006 Jan; 62(1):64-79. PubMed ID: 16287076 [TBL] [Abstract][Full Text] [Related]
48. Crystallization and preliminary X-ray analysis of an NAD(+)-dependent alcohol dehydrogenase from the extreme thermophilic archaebacterium Sulfolobus solfataricus. Pearl LH; Demasi D; Hemmings AM; Sica F; Mazzarella L; Raia CA; D'Auria S; Rossi M J Mol Biol; 1993 Feb; 229(3):782-4. PubMed ID: 8433371 [TBL] [Abstract][Full Text] [Related]
49. S-adenosylhomocysteine hydrolase from the archaeon Pyrococcus furiosus: biochemical characterization and analysis of protein structure by comparative molecular modeling. Porcelli M; Moretti MA; Concilio L; Forte S; Merlino A; Graziano G; Cacciapuoti G Proteins; 2005 Mar; 58(4):815-25. PubMed ID: 15645450 [TBL] [Abstract][Full Text] [Related]
50. Replacing the glutamate ligand in the structural zinc site of Sulfolobus solfataricus alcohol dehydrogenase with a cysteine decreases thermostability. Ammendola S; Raucci G; Incani O; Mele A; Tramontano A; Wallace A Protein Eng; 1995 Jan; 8(1):31-7. PubMed ID: 7770449 [TBL] [Abstract][Full Text] [Related]
51. Comparative kinetics of cofactor association and dissociation for the human and trypanosomal S-adenosylhomocysteine hydrolases. 1. Basic features of the association and dissociation processes. Li QS; Cai S; Borchardt RT; Fang J; Kuczera K; Middaugh CR; Schowen RL Biochemistry; 2007 May; 46(19):5798-809. PubMed ID: 17447732 [TBL] [Abstract][Full Text] [Related]
52. Contributions of valine-292 in the nicotinamide binding site of liver alcohol dehydrogenase and dynamics to catalysis. Rubach JK; Ramaswamy S; Plapp BV Biochemistry; 2001 Oct; 40(42):12686-94. PubMed ID: 11601993 [TBL] [Abstract][Full Text] [Related]
53. Identification of the subunits and target peptides of pig heart NAD-specific isocitrate dehydrogenase modified by the affinity label 8-(4-bromo-2,3-dioxobutylthio)NAD. Huang YC; Kumar A; Colman RF Arch Biochem Biophys; 1997 Dec; 348(1):207-18. PubMed ID: 9390193 [TBL] [Abstract][Full Text] [Related]
54. X-ray analysis of structural changes induced by reduced nicotinamide adenine dinucleotide when bound to cysteine-46-carboxymethylated liver alcohol dehydrogenase. Cedergren-Zeppezauer ES; Andersson I; Ottonello S; Bignetti E Biochemistry; 1985 Jul; 24(15):4000-10. PubMed ID: 2932154 [TBL] [Abstract][Full Text] [Related]
55. Sulfolobus tokodaii ST0053 produces a novel thermostable, NAD-dependent medium-chain alcohol dehydrogenase. Yanai H; Doi K; Ohshima T Appl Environ Microbiol; 2009 Mar; 75(6):1758-63. PubMed ID: 19139244 [TBL] [Abstract][Full Text] [Related]
56. Thermostable variants of Zymomonas mobilis alcohol dehydrogenase obtained using PCR-mediated random mutagenesis. Rellos P; Pinheiro L; Scopes RK Protein Expr Purif; 1998 Feb; 12(1):61-6. PubMed ID: 9473458 [TBL] [Abstract][Full Text] [Related]
57. Acid-base catalysis in the chemical mechanism of inosine monophosphate dehydrogenase. Markham GD; Bock CL; Schalk-Hihi C Biochemistry; 1999 Apr; 38(14):4433-40. PubMed ID: 10194364 [TBL] [Abstract][Full Text] [Related]
58. Affinity labelling of liver alcohol dehydrogenase. Effects of pH and buffers on affinity labelling with iodoacetic acid and (R, S)-2-bromo-3-(5-imidazolyl)propionic acid. Syvertsen C; McKinley-McKee JS Eur J Biochem; 1981 Jun; 117(1):165-70. PubMed ID: 7021155 [TBL] [Abstract][Full Text] [Related]
59. Crystal structure and amide H/D exchange of binary complexes of alcohol dehydrogenase from Bacillus stearothermophilus: insight into thermostability and cofactor binding. Ceccarelli C; Liang ZX; Strickler M; Prehna G; Goldstein BM; Klinman JP; Bahnson BJ Biochemistry; 2004 May; 43(18):5266-77. PubMed ID: 15122892 [TBL] [Abstract][Full Text] [Related]