BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 8555403)

  • 1. Identification of cis-2-butene-1,4-dial as a microsomal metabolite of furan.
    Chen LJ; Hecht SS; Peterson LA
    Chem Res Toxicol; 1995; 8(7):903-6. PubMed ID: 8555403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of amino acid and glutathione adducts of cis-2-butene-1,4-dial, a reactive metabolite of furan.
    Chen LJ; Hecht SS; Peterson LA
    Chem Res Toxicol; 1997 Aug; 10(8):866-74. PubMed ID: 9282835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione trapping to measure microsomal oxidation of furan to cis-2-butene-1,4-dial.
    Peterson LA; Cummings ME; Vu CC; Matter BA
    Drug Metab Dispos; 2005 Oct; 33(10):1453-8. PubMed ID: 16006568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trapping of cis-2-butene-1,4-dial to measure furan metabolism in human liver microsomes by cytochrome P450 enzymes.
    Gates LA; Lu D; Peterson LA
    Drug Metab Dispos; 2012 Mar; 40(3):596-601. PubMed ID: 22187484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of nucleoside adducts of cis-2-butene-1,4-dial, a reactive metabolite of furan.
    Byrns MC; Predecki DP; Peterson LA
    Chem Res Toxicol; 2002 Mar; 15(3):373-9. PubMed ID: 11896685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degraded protein adducts of cis-2-butene-1,4-dial are urinary and hepatocyte metabolites of furan.
    Lu D; Sullivan MM; Phillips MB; Peterson LA
    Chem Res Toxicol; 2009 Jun; 22(6):997-1007. PubMed ID: 19441776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of DNA adducts derived from the reactive metabolite of furan, cis-2-butene-1,4-dial.
    Byrns MC; Vu CC; Neidigh JW; Abad JL; Jones RA; Peterson LA
    Chem Res Toxicol; 2006 Mar; 19(3):414-20. PubMed ID: 16544946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of a 2'-deoxyguanosine adduct of cis-2-butene-1,4-dial, a reactive metabolite of furan.
    Vu CC; Peterson LA
    Chem Res Toxicol; 2005 Jun; 18(6):1012-7. PubMed ID: 15962936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatobiliary toxicity of furan: identification of furan metabolites in bile of male f344/n rats.
    Hamberger C; Kellert M; Schauer UM; Dekant W; Mally A
    Drug Metab Dispos; 2010 Oct; 38(10):1698-706. PubMed ID: 20639435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reactive metabolite of furan, cis-2-butene-1,4-dial, is mutagenic in the Ames assay.
    Peterson LA; Naruko KC; Predecki DP
    Chem Res Toxicol; 2000 Jul; 13(7):531-4. PubMed ID: 10898583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The formation of substituted 1,N6-etheno-2'-deoxyadenosine and 1,N2-etheno-2'-deoxyguanosine adducts by cis-2-butene-1,4-dial, a reactive metabolite of furan.
    Byrns MC; Vu CC; Peterson LA
    Chem Res Toxicol; 2004 Dec; 17(12):1607-13. PubMed ID: 15606136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a cis-2-butene-1,4-dial-derived glutathione conjugate in the urine of furan-treated rats.
    Peterson LA; Cummings ME; Chan JY; Vu CC; Matter BA
    Chem Res Toxicol; 2006 Sep; 19(9):1138-41. PubMed ID: 16978017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insight into the molecular mechanism of protein cross-linking induced by cis-2-butene-1,4-dial, the metabolite of furan: Formation of 2-substituted pyrrole cross-links involving the cysteine and lysine residues.
    Muńko M; Ciesielska K; Pluskota-Karwatka D
    Bioorg Chem; 2022 Aug; 125():105852. PubMed ID: 35551004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of NADP(H) analogs of tobacco-specific nitrosamines in rat liver and pancreatic microsomes.
    Peterson LA; Ng DK; Stearns RA; Hecht SS
    Chem Res Toxicol; 1994; 7(5):599-608. PubMed ID: 7841337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of furan metabolites derived from cysteine-cis-2-butene-1,4-dial-lysine cross-links.
    Lu D; Peterson LA
    Chem Res Toxicol; 2010 Jan; 23(1):142-51. PubMed ID: 20043645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vitro and In Vivo Metabolic Activation of Obacunone, A Bioactive and Potentially Hepatotoxic Constituent of Dictamni Cortex.
    Lang X; Zhang X; Wang D; Zhou W
    Planta Med; 2020 Jul; 86(10):686-695. PubMed ID: 32365393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamines are traps for reactive intermediates in furan metabolism.
    Peterson LA; Phillips MB; Lu D; Sullivan MM
    Chem Res Toxicol; 2011 Nov; 24(11):1924-36. PubMed ID: 21842885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into the molecular mechanisms of chemical carcinogenesis: In vivo adduction of histone H2B by a reactive metabolite of the chemical carcinogen furan.
    Nunes J; Martins IL; Charneira C; Pogribny IP; de Conti A; Beland FA; Marques MM; Jacob CC; Antunes AMM
    Toxicol Lett; 2016 Dec; 264():106-113. PubMed ID: 27825936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of serum and liver toxicokinetics for furan and liver DNA adduct formation in male Fischer 344 rats.
    Churchwell MI; Scheri RC; Von Tungeln LS; Gamboa da Costa G; Beland FA; Doerge DR
    Food Chem Toxicol; 2015 Dec; 86():1-8. PubMed ID: 26364877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of amino acid and glutathione N-conjugates of toosendanin: bioactivation of the furan ring mediated by CYP3A4.
    Yu J; Deng P; Zhong D; Chen X
    Chem Res Toxicol; 2014 Sep; 27(9):1598-609. PubMed ID: 25105339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.