These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 8555447)

  • 41. Identification of amino acid residues at nucleotide-binding sites of chaperonin GroEL/GroES and cpn10 by photoaffinity labeling with 2-azido-adenosine 5'-triphosphate.
    Bramhall EA; Cross RL; Rospert S; Steede NK; Landry SJ
    Eur J Biochem; 1997 Mar; 244(2):627-34. PubMed ID: 9119033
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of chaperonin 10 (Cpn10) from the intestinal human pathogen Entamoeba histolytica.
    van der Giezen M; León-Avila G; Tovar J
    Microbiology (Reading); 2005 Sep; 151(Pt 9):3107-3115. PubMed ID: 16151221
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Artificially evolved Synechococcus PCC6301 Rubisco variants exhibit improvements in folding and catalytic efficiency.
    Greene DN; Whitney SM; Matsumura I
    Biochem J; 2007 Jun; 404(3):517-24. PubMed ID: 17391103
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two residues of rubisco activase involved in recognition of the Rubisco substrate.
    Li C; Salvucci ME; Portis AR
    J Biol Chem; 2005 Jul; 280(26):24864-9. PubMed ID: 15866868
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
    Illingworth M; Salisbury J; Li W; Lin D; Chen L
    Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterisation of mutations in GroES that allow GroEL to function as a single ring.
    Liu H; Kovács E; Lund PA
    FEBS Lett; 2009 Jul; 583(14):2365-71. PubMed ID: 19545569
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bacteriophage T4 encodes a co-chaperonin that can substitute for Escherichia coli GroES in protein folding.
    van der Vies SM; Gatenby AA; Georgopoulos C
    Nature; 1994 Apr; 368(6472):654-6. PubMed ID: 7908418
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Residues in chaperonin GroEL required for polypeptide binding and release.
    Fenton WA; Kashi Y; Furtak K; Horwich AL
    Nature; 1994 Oct; 371(6498):614-9. PubMed ID: 7935796
    [TBL] [Abstract][Full Text] [Related]  

  • 49. From minichaperone to GroEL 2: importance of avidity of the multisite ring structure.
    Chatellier J; Hill F; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):883-96. PubMed ID: 11124034
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cloning and sequencing of the Bordetella pertussis cpn10/cpn60 (groESL) homolog.
    Fernandez RC; Weiss AA
    Gene; 1995 May; 158(1):151-2. PubMed ID: 7789805
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The importance of a mobile loop in regulating chaperonin/ co-chaperonin interaction: humans versus Escherichia coli.
    Richardson A; Schwager F; Landry SJ; Georgopoulos C
    J Biol Chem; 2001 Feb; 276(7):4981-7. PubMed ID: 11050098
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli.
    Gupta P; Aggarwal N; Batra P; Mishra S; Chaudhuri TK
    Int J Biochem Cell Biol; 2006; 38(11):1975-85. PubMed ID: 16822698
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chaperonins of the purple nonsulfur bacterium Rhodobacter sphaeroides.
    Lee WT; Watson GW; Tabita FR
    Methods Enzymol; 1998; 290():154-61. PubMed ID: 9534159
    [No Abstract]   [Full Text] [Related]  

  • 54. Reversible denaturation of oligomeric human chaperonin 10: denatured state depends on chemical denaturant.
    Guidry JJ; Moczygemba CK; Steede NK; Landry SJ; Wittung-Stafshede P
    Protein Sci; 2000 Nov; 9(11):2109-17. PubMed ID: 11152122
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Affinity of chaperonin-60 for a protein substrate and its modulation by nucleotides and chaperonin-10.
    Staniforth RA; Burston SG; Atkinson T; Clarke AR
    Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):651-8. PubMed ID: 7912068
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression and genomic organization of the zebrafish chaperonin gene complex.
    Martin CC; Tsang CH; Beiko RG; Krone PH
    Genome; 2002 Oct; 45(5):804-11. PubMed ID: 12416612
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cloning and disruption of the gene encoding yeast mitochondrial chaperonin 10, the homolog of E. coli groES.
    Rospert S; Junne T; Glick BS; Schatz G
    FEBS Lett; 1993 Dec; 335(3):358-60. PubMed ID: 7903252
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plant RuBisCo assembly in
    Aigner H; Wilson RH; Bracher A; Calisse L; Bhat JY; Hartl FU; Hayer-Hartl M
    Science; 2017 Dec; 358(6368):1272-1278. PubMed ID: 29217567
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The chaperonins of Synechocystis PCC 6803 differ in heat inducibility and chaperone activity.
    Kovács E; van der Vies SM; Glatz A; Török Z; Varvasovszki V; Horváth I; Vígh L
    Biochem Biophys Res Commun; 2001 Dec; 289(4):908-15. PubMed ID: 11735133
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differential effects of N- and C-terminal deletions on the two activities of rubisco activase.
    Esau BD; Snyder GW; Portis AR
    Arch Biochem Biophys; 1996 Feb; 326(1):100-5. PubMed ID: 8579356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.