These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8555636)

  • 1. A two layer model for the effects of blood contact on membrane transport in artificial organs.
    Boyd RF; Langsdorf LJ; Zydney AL
    ASAIO J; 1994; 40(3):M864-9. PubMed ID: 8555636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of blood contact on the transport properties of hemodialysis membranes: a two-layer membrane model.
    Langsdorf LJ; Zydney AL
    Blood Purif; 1994; 12(6):292-307. PubMed ID: 7532418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusive and convective solute transport through hemodialysis membranes: a hydrodynamic analysis.
    Langsdorf LJ; Zydney AL
    J Biomed Mater Res; 1994 May; 28(5):573-82. PubMed ID: 7517941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Plasma Proteins on the Transport and Surface Characteristics of Polysulfone/Polyethersulfone and Asymmetric Cellulose Triacetate High Flux Dialyzers.
    Kim TR; Hadidi M; Motevalian SP; Sunohara T; Zydney AL
    Artif Organs; 2018 Nov; 42(11):1070-1077. PubMed ID: 29774568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of blood contact and reuse on the transport properties of high-flux dialysis membranes.
    Kunas GA; Burke RA; Brierton MA; Ofsthun NJ
    ASAIO J; 1996; 42(4):288-94. PubMed ID: 8828786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filtration of native and glycated beta2-microglobulin by charged and neutral dialysis membranes.
    Randoux C; Gillery P; Georges N; Lavaud S; Chanard J
    Kidney Int; 2001 Oct; 60(4):1571-7. PubMed ID: 11576375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-membrane interactions during hemodialysis: effects on solute transport.
    Morti SM; Zydney AL
    ASAIO J; 1998; 44(4):319-26. PubMed ID: 9682960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of a polyacrylonitrile membrane and a membrane made of regenerated cellulose on the plasma concentrations of erythropoietin during hemodialysis.
    Opatrný K; Krouzecký A; Wirth J; Vít L; Eiselt J
    Artif Organs; 1998 Oct; 22(10):816-20. PubMed ID: 9790077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of protein adsorption on the transport characteristics of asymmetric ultrafiltration membranes.
    Mochizuki S; Zydney AL
    Biotechnol Prog; 1992; 8(6):553-61. PubMed ID: 1369038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of dialysis membranes on the convective transport of middle molecules.
    De Francisco AL; Gordillo J; Cotorruelo JG; Ruiz L; Gonzalez M; Morales P; Arias M
    Int J Artif Organs; 1986 Nov; 9(6):421-6. PubMed ID: 3818117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of blood flow on adsorption of beta2-microglobulin onto AN69 dialyzer membrane.
    Kandus A; Malovrh M; Bren AF
    Artif Organs; 1997 Aug; 21(8):903-6. PubMed ID: 9247179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta 2-microglobulin removal by synthetic dialysis membranes. Mechanisms and kinetics of the molecule.
    Ronco C; Heifetz A; Fox K; Curtin C; Brendolan A; Gastaldon F; Crepaldi C; Fortunato A; Pietribasi G; Caberlotto A; Brunello A; Milan Manani S; Zanella M; La Greca G
    Int J Artif Organs; 1997 Mar; 20(3):136-43. PubMed ID: 9151148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AN69: Evolution of the world's first high permeability membrane.
    Thomas M; Moriyama K; Ledebo I
    Contrib Nephrol; 2011; 173():119-129. PubMed ID: 21865784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of blood-membrane interactions on solute clearance during hemodialysis.
    Langsdorf LJ; Krankel LG; Zydney AL
    ASAIO J; 1993; 39(3):M767-72. PubMed ID: 7505640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of 131I-beta2 microglobulin in hemodialysis patients: assessment using total body counting.
    Chanard J; Caudwell V; Valeire J; Vincent C; Randoux C; Wuillai A; Wynckel A
    Artif Organs; 1998 Jul; 22(7):574-80. PubMed ID: 9684694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenge of phagocyte metabolism by extracorporeal circulation and membrane contact. A biocompatibility test.
    Vanholder RC; Dhondt A; Ringoir SM
    ASAIO Trans; 1988; 34(3):543-5. PubMed ID: 3143383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solute washout experiments for characterizing mass transport in hollow fiber immunoisolation membranes.
    Boyd RF; López M; Stephens CL; Vélez GM; Ramírez CA; Zydney AL
    Ann Biomed Eng; 1998; 26(4):618-26. PubMed ID: 9662154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic AMP in cells adhering to bioincompatible (Cuprophan) and biocompatible (AN69) substrates.
    Faucheux N; Warocquier-Clérout R; Haye B; Nagel MD
    J Biomed Mater Res; 1998 Mar; 39(3):506-10. PubMed ID: 9468063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of dual-skinned, high-flux membranes to reduce backtransport in hemodialysis.
    Soltys PJ; Zydney A; Leypoldt JK; Henderson LW; Ofsthun NJ
    Kidney Int; 2000 Aug; 58(2):818-28. PubMed ID: 10916107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility of hemodialysis membranes: a study in healthy subjects.
    Gutierrez A; Alvestrand A; Bergström J; Beving H; Lantz B; Henderson LW
    Blood Purif; 1994; 12(2):95-105. PubMed ID: 7826580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.