These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 8555678)

  • 1. Biodegradation of the phenoxy herbicide MCPA by microbial consortia isolated from a rice field.
    Oh KH; Ahn SK; Yoon KH; Kim YS
    Bull Environ Contam Toxicol; 1995 Oct; 55(4):539-45. PubMed ID: 8555678
    [No Abstract]   [Full Text] [Related]  

  • 2. Bacterial degradation of phenoxy herbicide mixtures 2,4-D and MCPP.
    Oh KH; Tuovinen OH
    Bull Environ Contam Toxicol; 1991 Aug; 47(2):222-9. PubMed ID: 1912698
    [No Abstract]   [Full Text] [Related]  

  • 3. Detection and identification of substituted phenols as intermediates of concurrent bacterial degradation of the phenoxy herbicides MCPP and 2,4-D.
    Oh KH; Tuovinen OH
    FEMS Microbiol Lett; 1991 Apr; 63(2-3):141-6. PubMed ID: 2060758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of enhanced biodegradation of 2,4-D and MCPA in a field soil following cessation of repeated herbicide applications.
    Smith AE; Aubin AJ
    Bull Environ Contam Toxicol; 1994 Jul; 53(1):7-11. PubMed ID: 8069077
    [No Abstract]   [Full Text] [Related]  

  • 5. A study of the degradation of phenoxyacid herbicides at different sites in a limestone aquifer.
    Harrison I; Leader RU; Higgo JJ; Williams GM
    Chemosphere; 1998 Mar; 36(6):1211-32. PubMed ID: 9493323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new concept for reduction of diffuse contamination by simultaneous application of pesticide and pesticide-degrading microorganisms.
    Onneby K; Jonsson A; Stenström J
    Biodegradation; 2010 Feb; 21(1):21-9. PubMed ID: 19557524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA.
    Müller RH; Jorks S; Kleinsteuber S; Babel W
    Microbiol Res; 1999 Dec; 154(3):241-6. PubMed ID: 10652787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the degradation of the herbicides 2,4-D and MCPA at different depths in contaminated agricultural soil.
    Crespin MA; Gallego M; Valcárcel M; González JL
    Environ Sci Technol; 2001 Nov; 35(21):4265-70. PubMed ID: 11718340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of 2,4-D and MCPA in soils of low pH.
    Torstensson NT
    Environ Qual Saf Suppl; 1975; 3():262-5. PubMed ID: 5271
    [No Abstract]   [Full Text] [Related]  

  • 10. A rapid method to screen degradation ability in chlorophenoxyalkanoic acid herbicide-degrading bacteria.
    Smejkal CW; Vallaeys T; Burton SK; Lappin-Scott HM
    Lett Appl Microbiol; 2001 Apr; 32(4):273-7. PubMed ID: 11298940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of the herbicides mecoprop, dichlorprop, and 2,4-D in aerobic and anaerobic sewage sludge as determined by laboratory batch studies and enantiomer-specific analysis.
    Zipper C; Bolliger C; Fleischmann T; Suter MJ; Angst W; Müller MD; Kohler HP
    Biodegradation; 1999; 10(4):271-8. PubMed ID: 10633543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centimetre-scale vertical variability of phenoxy acid herbicide mineralization potential in aquifer sediment relates to the abundance of tfdA genes.
    Batıoğlu-Pazarbaşı M; Bælum J; Johnsen AR; Sørensen SR; Albrechtsen HJ; Aamand J
    FEMS Microbiol Ecol; 2012 May; 80(2):331-41. PubMed ID: 22611553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of bacterial cultures enriched on the chlorophenoxyalkanoic acid herbicides 4-(2,4-dichlorophenoxy) butyric acid and 4-(4-chloro-2-methylphenoxy) butyric acid.
    Smejkal CW; Seymour FA; Burton SK; Lappin-Scott HM
    J Ind Microbiol Biotechnol; 2003 Sep; 30(9):561-7. PubMed ID: 14513383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of wheat ash on the MCPA immobilization in agricultural soils.
    Hiller E; Fargasová A; Zemanová L; Bartal M
    Bull Environ Contam Toxicol; 2007 Oct; 79(4):478-81. PubMed ID: 17619797
    [No Abstract]   [Full Text] [Related]  

  • 15. Rapid Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by Cupriavidus gilardii T-1.
    Wu X; Wang W; Liu J; Pan D; Tu X; Lv P; Wang Y; Cao H; Wang Y; Hua R
    J Agric Food Chem; 2017 May; 65(18):3711-3720. PubMed ID: 28434228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cupriavidus pinatubonensis AEO106 deals with copper-induced oxidative stress before engaging in biodegradation of the herbicide 4-chloro-2-methylphenoxyacetic acid.
    Svenningsen NB; Damgaard M; Rasmussen M; Pérez-Pantoja D; Nybroe O; Nicolaisen MH
    BMC Microbiol; 2017 Oct; 17(1):211. PubMed ID: 29084513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of phenoxy acid herbicide mineralization and growth of microbial degraders in 15 soils monitored by quantitative real-time PCR of the functional tfdA gene.
    Bælum J; Prestat E; David MM; Strobel BW; Jacobsen CS
    Appl Environ Microbiol; 2012 Aug; 78(15):5305-12. PubMed ID: 22635998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Degradation of Phenoxyalkanoic Acid Herbicides by the Alkali-Tolerant
    Xiang S; Lin R; Shang H; Xu Y; Zhang Z; Wu X; Zong F
    J Agric Food Chem; 2020 Mar; 68(12):3786-3795. PubMed ID: 32133852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct analysis of tfdA gene expression by indigenous bacteria in phenoxy acid amended agricultural soil.
    Baelum J; Nicolaisen MH; Holben WE; Strobel BW; Sørensen J; Jacobsen CS
    ISME J; 2008 Jun; 2(6):677-87. PubMed ID: 18356824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of three common chlorophenoxyacetic acid herbicides into the rat brain.
    Tyynelä K; Elo HA; Ylitalo P
    Arch Toxicol; 1990; 64(1):61-5. PubMed ID: 2306196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.