These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8556429)

  • 21. Facile synthesis of phosphonamidate- and phosphonate-linked phosphonopeptides.
    Fu N; Zhang Q; Duan L; Xu J
    J Pept Sci; 2006 Apr; 12(4):303-9. PubMed ID: 16245363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical dephosphorylation for identification of multiply phosphorylated peptides and phosphorylation site determination.
    Kyono Y; Sugiyama N; Tomita M; Ishihama Y
    Rapid Commun Mass Spectrom; 2010 Aug; 24(15):2277-82. PubMed ID: 20623713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fragmentation of phosphopeptides by atmospheric pressure MALDI and ESI/Ion trap mass spectrometry.
    Moyer SC; Cotter RJ; Woods AS
    J Am Soc Mass Spectrom; 2002 Mar; 13(3):274-83. PubMed ID: 11908807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reversible beta-pleated sheet formation of a phosphorylated synthetic tau peptide.
    Lang E; Szendrei GI; Elekes I; Lee VM; Otvos L
    Biochem Biophys Res Commun; 1992 Jan; 182(1):63-9. PubMed ID: 1731800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthetic phosphopeptides: From spike-in standards to affinity tools for protein-protein interaction studies.
    Winter M; Mayer R; Warnken U; Debus J; Abdollahi A; Schnölzer M
    Anal Biochem; 2019 Mar; 568():73-77. PubMed ID: 30597127
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simple and effective method for detecting phosphopeptides for phosphoproteomic analysis.
    Wang Z; Dong G; Singh S; Steen H; Li J
    J Proteomics; 2009 Jul; 72(5):831-5. PubMed ID: 19341826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluating the coupling efficiency of phosphorylated amino acids for SPOT synthesis.
    Tapia V; Ay B; Triebus J; Wolter E; Boisguerin P; Volkmer R
    J Pept Sci; 2008 Dec; 14(12):1309-14. PubMed ID: 18816512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The synthesis of phosphopeptides via the Bpoc-based approach.
    Attard TJ; Reynolds EC; Perich JW
    Org Biomol Chem; 2007 Feb; 5(4):664-70. PubMed ID: 17285175
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical synthesis of phosphopeptides using the arylthio group for protection of phosphate: application to identification of cdc2 kinase phosphorylation sites.
    Ueno Y; Makino S; Kitagawa M; Nishimura S; Taya Y; Hata T
    Int J Pept Protein Res; 1995 Aug; 46(2):106-12. PubMed ID: 8567164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rational Molecular Design of Potent PLK1 PBD Domain-binding Phosphopeptides Using Preferential Amino Acid Building Blocks.
    Mao XL; Wang KF; Zhu F; Pan ZH; Wu GM; Zhu HY
    Chem Biodivers; 2016 Aug; 13(8):1103-10. PubMed ID: 27450535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reversed-phase high-performance liquid chromatographic separation of synthetic phosphopeptide isomers.
    Otvos L; Tangoren IA; Wroblewski K; Hollosi M; Lee VM
    J Chromatogr; 1990 Jul; 512():265-72. PubMed ID: 2229230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphatase-directed phosphorylation-site determination: a synthesis of methods for the detection and identification of phosphopeptides.
    Torres MP; Thapar R; Marzluff WF; Borchers CH
    J Proteome Res; 2005; 4(5):1628-35. PubMed ID: 16212415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A manual sequence method of peptides and phosphopeptides using 4-(1'-cyanoisoindolyl)phenylisothiocyanate.
    Shibata T; Wainaina MN; Miyoshi T; Kabashima T; Kai M
    J Chromatogr A; 2011 Jun; 1218(24):3757-62. PubMed ID: 21531425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced phosphopeptide isolation by Fe(III)-IMAC using 1,1,1,3,3,3-hexafluoroisopropanol.
    Barnouin KN; Hart SR; Thompson AJ; Okuyama M; Waterfield M; Cramer R
    Proteomics; 2005 Nov; 5(17):4376-88. PubMed ID: 16294313
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Chemical synthesis of phosphopeptides].
    Otaka A; Aimoto S
    Tanpakushitsu Kakusan Koso; 1999 Mar; 44(4 Suppl):606-13. PubMed ID: 10204014
    [No Abstract]   [Full Text] [Related]  

  • 36. Synthesis of phosphonamidate peptides by Staudinger reactions of silylated phosphinic acids and esters.
    Wilkening I; del Signore G; Hackenberger CP
    Chem Commun (Camb); 2011 Jan; 47(1):349-51. PubMed ID: 20830364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The H-phosphonate approach to the synthesis of phosphopeptides on solid phase.
    Kupihár Z; Kele Z; Tóth GK
    Org Lett; 2001 Apr; 3(7):1033-5. PubMed ID: 11277788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solid phase synthesis of pp60src-related phosphopeptides via 'global' phosphorylation and their use as substrates for enzymatic phosphorylation by casein kinase-2.
    Perich JW; Meggio F; Pinna LA
    Bioorg Med Chem; 1996 Feb; 4(2):143-50. PubMed ID: 8814874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of sites of protein phosphorylation.
    Aitken A; Learmonth M
    Methods Mol Biol; 1997; 64():293-306. PubMed ID: 9116832
    [No Abstract]   [Full Text] [Related]  

  • 40. Highly efficient and selective enrichment of phosphopeptides using porous anodic alumina membrane for MALDI-TOF MS analysis.
    Wang Y; Chen W; Wu J; Guo Y; Xia X
    J Am Soc Mass Spectrom; 2007 Aug; 18(8):1387-95. PubMed ID: 17533135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.