These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 8557046)

  • 21. Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4.
    Hemmati-Brivanlou A; Thomsen GH
    Dev Genet; 1995; 17(1):78-89. PubMed ID: 7554498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial and temporal properties of ventral blood island induction in Xenopus laevis.
    Kumano G; Belluzzi L; Smith WC
    Development; 1999 Dec; 126(23):5327-37. PubMed ID: 10556058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A study of mesoderm patterning through the analysis of the regulation of Xmyf-5 expression.
    Polli M; Amaya E
    Development; 2002 Jun; 129(12):2917-27. PubMed ID: 12050139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel homeobox gene, dharma, can induce the organizer in a non-cell-autonomous manner.
    Yamanaka Y; Mizuno T; Sasai Y; Kishi M; Takeda H; Kim CH; Hibi M; Hirano T
    Genes Dev; 1998 Aug; 12(15):2345-53. PubMed ID: 9694799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HNF1(beta) is required for mesoderm induction in the Xenopus embryo.
    Vignali R; Poggi L; Madeddu F; Barsacchi G
    Development; 2000 Apr; 127(7):1455-65. PubMed ID: 10704391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A homeobox gene essential for zebrafish notochord development.
    Talbot WS; Trevarrow B; Halpern ME; Melby AE; Farr G; Postlethwait JH; Jowett T; Kimmel CB; Kimelman D
    Nature; 1995 Nov; 378(6553):150-7. PubMed ID: 7477317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A p38 MAPK-CREB pathway functions to pattern mesoderm in Xenopus.
    Keren A; Keren-Politansky A; Bengal E
    Dev Biol; 2008 Oct; 322(1):86-94. PubMed ID: 18675264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The homeobox gene PV.1 mediates specification of the prospective neural ectoderm in Xenopus embryos.
    Ault KT; Xu RH; Kung HF; Jamrich M
    Dev Biol; 1997 Dec; 192(1):162-71. PubMed ID: 9405105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Xenopus embryos, BMP heterodimers are not required for mesoderm induction, but BMP activity is necessary for dorsal/ventral patterning.
    Eimon PM; Harland RM
    Dev Biol; 1999 Dec; 216(1):29-40. PubMed ID: 10588861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The LIM class homeobox gene lim5: implied role in CNS patterning in Xenopus and zebrafish.
    Toyama R; Curtiss PE; Otani H; Kimura M; Dawid IB; Taira M
    Dev Biol; 1995 Aug; 170(2):583-93. PubMed ID: 7649385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Xenopus msx-1 regulates dorso-ventral axis formation by suppressing the expression of organizer genes.
    Takeda M; Saito Y; Sekine R; Onitsuka I; Maeda R; Maéno M
    Comp Biochem Physiol B Biochem Mol Biol; 2000 Jun; 126(2):157-68. PubMed ID: 10874163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann's organizer.
    Laurent MN; Blitz IL; Hashimoto C; Rothbächer U; Cho KW
    Development; 1997 Dec; 124(23):4905-16. PubMed ID: 9428427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Goosecoid and the organizer.
    De Roberts EM; Blum M; Niehrs C; Steinbeisser H
    Dev Suppl; 1992; ():167-71. PubMed ID: 1363720
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of Xmsx-2 in the anterior-posterior patterning of the mesoderm in Xenopus laevis.
    Gong SG; Kiba A
    Differentiation; 1999 Nov; 65(3):131-40. PubMed ID: 10631810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The nodal target gene Xmenf is a component of an FGF-independent pathway of ventral mesoderm induction in Xenopus.
    Kumano G; Smith WC
    Mech Dev; 2002 Oct; 118(1-2):45-56. PubMed ID: 12351169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overexpression of the secreted factor Mig30 expressed in the Spemann organizer impairs morphogenetic movements during Xenopus gastrulation.
    Hayata T; Tanegashima K; Takahashi S; Sogame A; Asashima M
    Mech Dev; 2002 Mar; 112(1-2):37-51. PubMed ID: 11850177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The expression pattern of Xenopus Mox-2 implies a role in initial mesodermal differentiation.
    Candia AF; Wright CV
    Mech Dev; 1995 Jul; 52(1):27-36. PubMed ID: 7577672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Xenopus crescent encoding a Frizzled-like domain is expressed in the Spemann organizer and pronephros.
    Shibata M; Ono H; Hikasa H; Shinga J; Taira M
    Mech Dev; 2000 Sep; 96(2):243-6. PubMed ID: 10960792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes.
    Sasai Y; Lu B; Steinbeisser H; Geissert D; Gont LK; De Robertis EM
    Cell; 1994 Dec; 79(5):779-90. PubMed ID: 8001117
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antimorphic PV.1 causes secondary axis by inducing ectopic organizer.
    Hwang YS; Seo JJ; Cha SW; Lee HS; Lee SY; Roh DH; Kung Hf HF; Kim J; Ja Park M
    Biochem Biophys Res Commun; 2002 Apr; 292(4):1081-6. PubMed ID: 11944926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.