These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 8557713)
1. Structural basis of trimannoside recognition by concanavalin A. Naismith JH; Field RA J Biol Chem; 1996 Jan; 271(2):972-6. PubMed ID: 8557713 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamics of lectin-carbohydrate interactions. Binding of the core trimannoside of asparagine-linked carbohydrates and deoxy analogs to concanavalin A. Gupta D; Dam TK; Oscarson S; Brewer CF J Biol Chem; 1997 Mar; 272(10):6388-92. PubMed ID: 9045661 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of the lectin from Dioclea grandiflora complexed with core trimannoside of asparagine-linked carbohydrates. Rozwarski DA; Swami BM; Brewer CF; Sacchettini JC J Biol Chem; 1998 Dec; 273(49):32818-25. PubMed ID: 9830028 [TBL] [Abstract][Full Text] [Related]
4. Concanavalin A distorts the beta-GlcNAc-(1-->2)-Man linkage of beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man- (1-->6)]-Man upon binding. Moothoo DN; Naismith JH Glycobiology; 1998 Feb; 8(2):173-81. PubMed ID: 9451027 [TBL] [Abstract][Full Text] [Related]
5. Differential solvation of "core" trimannoside complexes of the Dioclea grandiflora lectin and concanavalin A detected by primary solvent isotope effects in isothermal titration microcalorimetry. Dam TK; Oscarson S; Sacchettini JC; Brewer CF J Biol Chem; 1998 Dec; 273(49):32826-32. PubMed ID: 9830029 [TBL] [Abstract][Full Text] [Related]
6. X-ray crystal structure of a pea lectin-trimannoside complex at 2.6 A resolution. Rini JM; Hardman KD; Einspahr H; Suddath FL; Carver JP J Biol Chem; 1993 May; 268(14):10126-32. PubMed ID: 8486683 [TBL] [Abstract][Full Text] [Related]
7. The crystal structures of Man(alpha1-3)Man(alpha1-O)Me and Man(alpha1-6)Man(alpha1-O)Me in complex with concanavalin A. Bouckaert J; Hamelryck TW; Wyns L; Loris R J Biol Chem; 1999 Oct; 274(41):29188-95. PubMed ID: 10506175 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamics of binding of the core trimannoside of asparagine-linked carbohydrates and deoxy analogs to Dioclea grandiflora lectin. Dam TK; Oscarson S; Brewer CF J Biol Chem; 1998 Dec; 273(49):32812-7. PubMed ID: 9830027 [TBL] [Abstract][Full Text] [Related]
9. A comparison of the fine saccharide-binding specificity of Dioclea grandiflora lectin and concanavalin A. Gupta D; Oscarson S; Raju TS; Stanley P; Toone EJ; Brewer CF Eur J Biochem; 1996 Dec; 242(2):320-6. PubMed ID: 8973650 [TBL] [Abstract][Full Text] [Related]
10. Heterometal-Coordinated Monomeric Concanavalin A at pH 7.5 from Canavalia ensiformis. Chung NJ; Park YR; Lee DH; Oh SY; Park JH; Lee SJ J Microbiol Biotechnol; 2017 Dec; 27(12):2241-2244. PubMed ID: 29025256 [TBL] [Abstract][Full Text] [Related]
11. The role of metal ions in substrate recognition and stability of concanavalin A: a molecular dynamics study. Kaushik S; Mohanty D; Surolia A Biophys J; 2009 Jan; 96(1):21-34. PubMed ID: 18849415 [TBL] [Abstract][Full Text] [Related]
12. Specificity of C-glycoside complexation by mannose/glucose specific lectins. Weatherman RV; Mortell KH; Chervenak M; Kiessling LL; Toone EJ Biochemistry; 1996 Mar; 35(11):3619-24. PubMed ID: 8639514 [TBL] [Abstract][Full Text] [Related]
13. Involvement of water in carbohydrate-protein binding: concanavalin A revisited. Kadirvelraj R; Foley BL; Dyekjaer JD; Woods RJ J Am Chem Soc; 2008 Dec; 130(50):16933-42. PubMed ID: 19053475 [TBL] [Abstract][Full Text] [Related]
14. The crystal structure of the complexes of concanavalin A with 4'-nitrophenyl-alpha-D-mannopyranoside and 4'-nitrophenyl-alpha-D-glucopyranoside. Kanellopoulos PN; Pavlou K; Perrakis A; Agianian B; Vorgias CE; Mavrommatis C; Soufi M; Tucker PA; Hamodrakas SJ J Struct Biol; 1996; 116(3):345-55. PubMed ID: 8812993 [TBL] [Abstract][Full Text] [Related]
15. A structure of the complex between concanavalin A and methyl-3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside reveals two binding modes. Loris R; Maes D; Poortmans F; Wyns L; Bouckaert J J Biol Chem; 1996 Nov; 271(48):30614-8. PubMed ID: 8940035 [TBL] [Abstract][Full Text] [Related]
16. Effect of shape, size, and valency of multivalent mannosides on their binding properties to phytohemagglutinins. Roy R; Pagé D; Perez SF; Bencomo VV Glycoconj J; 1998 Mar; 15(3):251-63. PubMed ID: 9579802 [TBL] [Abstract][Full Text] [Related]
17. Diocleinae lectins are a group of proteins with conserved binding sites for the core trimannoside of asparagine-linked oligosaccharides and differential specificities for complex carbohydrates. Dam TK; Cavada BS; Grangeiro TB; Santos CF; de Sousa FA; Oscarson S; Brewer CF J Biol Chem; 1998 May; 273(20):12082-8. PubMed ID: 9575151 [TBL] [Abstract][Full Text] [Related]
18. Involvement of water in carbohydrate-protein binding. Clarke C; Woods RJ; Gluska J; Cooper A; Nutley MA; Boons GJ J Am Chem Soc; 2001 Dec; 123(49):12238-47. PubMed ID: 11734024 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamic binding studies of lectins from the diocleinae subtribe to deoxy analogs of the core trimannoside of asparagine-linked oligosaccharides. Dam TK; Cavada BS; Grangeiro TB; Santos CF; Ceccatto VM; de Sousa FA; Oscarson S; Brewer CF J Biol Chem; 2000 May; 275(21):16119-26. PubMed ID: 10747944 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamics of lectin-carbohydrate interactions. Titration microcalorimetry measurements of the binding of N-linked carbohydrates and ovalbumin to concanavalin A. Mandal DK; Kishore N; Brewer CF Biochemistry; 1994 Feb; 33(5):1149-56. PubMed ID: 8110746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]