BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 8557846)

  • 1. Dark-rearing changes dendritic microtubule-associated protein 2 (MAP2) but not subplate neurons in cat visual cortex.
    Reid SN; Daw NW
    J Comp Neurol; 1995 Aug; 359(1):38-47. PubMed ID: 8557846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dark-rearing retards the maturation of astrocytes in restricted layers of cat visual cortex.
    Müller CM
    Glia; 1990; 3(6):487-94. PubMed ID: 2148551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of dark rearing on the development of the visual cortex of the rat.
    Borges S; Berry M
    J Comp Neurol; 1978 Jul; 180(2):277-300. PubMed ID: 659662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population.
    Chun JJ; Shatz CJ
    J Comp Neurol; 1989 Apr; 282(4):555-69. PubMed ID: 2566630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of dark rearing on the volume of visual cortex (areas 17 and 18) and number of visual cortical cells in young kittens.
    Takács J; Saillour P; Imbert M; Bogner M; Hámori J
    J Neurosci Res; 1992 Jul; 32(3):449-59. PubMed ID: 1433391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunohistochemical study of the pattern of rapid expression of C-Fos protein in the visual cortex of dark-reared kittens following initial exposure to light.
    Beaver CJ; Mitchell DE; Robertson HA
    J Comp Neurol; 1993 Jul; 333(4):469-84. PubMed ID: 8370813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure to lines of only one orientation modifies dendritic morphology of cells in the visual cortex of the cat.
    Tieman SB; Hirsch HV
    J Comp Neurol; 1982 Nov; 211(4):353-62. PubMed ID: 7174898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postnatal development of thalamic recipient neurons in the monkey striate cortex: II. Influence of afferent driving on spine acquisition and dendritic growth of layer 4C spiny stellate neurons.
    Lund JS; Holbach SM; Chung WW
    J Comp Neurol; 1991 Jul; 309(1):129-40. PubMed ID: 1894766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Somatodendritic minicolumns of output neurons in the rat visual cortex.
    Vercelli AE; Garbossa D; Curtetti R; Innocenti GM
    Eur J Neurosci; 2004 Jul; 20(2):495-502. PubMed ID: 15233758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The combined effects of unilateral enucleation and rearing in a 'dim' red light on synapse-to-neuron ratios in the rat visual cortex.
    Bedi KS
    J Anat; 1989 Dec; 167():71-84. PubMed ID: 2630542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crossmodal audio-visual interactions in the primary visual cortex of the visually deprived cat: a physiological and anatomical study.
    Sanchez-Vives MV; Nowak LG; Descalzo VF; Garcia-Velasco JV; Gallego R; Berbel P
    Prog Brain Res; 2006; 155():287-311. PubMed ID: 17027395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirement for subplate neurons in the formation of thalamocortical connections.
    Ghosh A; Antonini A; McConnell SK; Shatz CJ
    Nature; 1990 Sep; 347(6289):179-81. PubMed ID: 2395469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the development of neuropeptide and MAP2 immunocytochemical labeling in the macaque visual cortex during pre- and postnatal development.
    Mehra RD; Hendrickson AE
    J Neurobiol; 1993 Jan; 24(1):101-24. PubMed ID: 7678282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of disabled-1 as a candidate gene for critical period neuroplasticity in cat and mouse visual cortex.
    Yang CB; Zheng YT; Kiser PJ; Mower GD
    Eur J Neurosci; 2006 May; 23(10):2804-8. PubMed ID: 16817883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex.
    Tropea D; Kreiman G; Lyckman A; Mukherjee S; Yu H; Horng S; Sur M
    Nat Neurosci; 2006 May; 9(5):660-8. PubMed ID: 16633343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Electron microscopic analysis of expression of NMDA-R1 in the developmental process of visual cortex in strabismic amblyopic cat].
    Yin Z; Yu T; Chen L
    Zhonghua Yan Ke Za Zhi; 2002 Aug; 38(8):472-5. PubMed ID: 12410985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of GFAP induced by long dark rearing is not restricted to visual cortex.
    Corvetti L; Aztiria E; Domenici L
    Brain Res; 2006 Jan; 1067(1):146-53. PubMed ID: 16343449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and morphological changes in the cat lateral geniculate nucleus and visual cortex induced by visual deprivation are revealed by monoclonal antibodies Cat-304 and Cat-301.
    Guimarães A; Zaremba S; Hockfield S
    J Neurosci; 1990 Sep; 10(9):3014-24. PubMed ID: 1697900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of dark rearing on dendritic spines in layer IV of the mouse visual cortex. A quantitative electron microscopical study.
    Freire M
    J Anat; 1978 May; 126(Pt 1):193-201. PubMed ID: 649498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual deprivation alters dendritic bundle architecture in layer 4 of rat visual cortex.
    Gabbott PL; Stewart MG
    Neuroscience; 2012 Apr; 207():65-77. PubMed ID: 22269141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.