These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 8557846)

  • 61. Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity.
    Kanold PO; Shatz CJ
    Neuron; 2006 Sep; 51(5):627-38. PubMed ID: 16950160
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Developmental and sensory-dependent changes of phosphoinositide-linked metabotropic glutamate receptors.
    Reid SN; Romano C; Hughes T; Daw NW
    J Comp Neurol; 1997 Dec; 389(4):577-83. PubMed ID: 9421140
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Depth perception after infant and adult visual neocortical lesions in light- and dark-reared rats.
    Tees RC
    Dev Psychobiol; 1976 May; 9(3):223-35. PubMed ID: 955283
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fos expression during the critical period in visual cortex: differences between normal and dark reared cats.
    Mower GD; Kaplan IV
    Brain Res Mol Brain Res; 1999 Feb; 64(2):264-9. PubMed ID: 9931501
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The effect of dark rearing on the time course of the critical period in cat visual cortex.
    Mower GD
    Brain Res Dev Brain Res; 1991 Feb; 58(2):151-8. PubMed ID: 2029762
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Responses of neurones in the striate cortex observed in normal and dark-reared kittens during post-natal life.
    Buisseret P; Imbert M
    J Physiol; 1975 Mar; 246(2):98P-99P. PubMed ID: 1142298
    [No Abstract]   [Full Text] [Related]  

  • 67. The effect of visual deprivation upon the Meynert cell in the striate cortex of the cat.
    Winfield DA
    Brain Res; 1982 Sep; 281(1):53-7. PubMed ID: 7139341
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Diminished microtubule-associated protein 2 (MAP2) immunoreactivity following cortical impact brain injury.
    Posmantur RM; Kampfl A; Taft WC; Bhattacharjee M; Dixon CE; Bao J; Hayes RL
    J Neurotrauma; 1996 Mar; 13(3):125-37. PubMed ID: 8965322
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Involvement of subplate neurons in the formation of ocular dominance columns.
    Ghosh A; Shatz CJ
    Science; 1992 Mar; 255(5050):1441-3. PubMed ID: 1542795
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Experience-dependent modifications in MAP2 phosphorylation in rat olfactory bulb.
    Philpot BD; Lim JH; Halpain S; Brunjes PC
    J Neurosci; 1997 Dec; 17(24):9596-604. PubMed ID: 9391014
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Demonstration of an effect of (3H)-L-proline on the number of dendritic spines on stellate cells of the primary visual cortex in Macaca during the critical period].
    Versaux-Botteri C; Nguyen-Legros J
    C R Acad Sci III; 1984; 298(20):577-82. PubMed ID: 6432227
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Changes in the content and distribution of microtubule associated protein 2 in the hippocampus of the rat during the estrous cycle.
    Reyna-Neyra A; Arias C; Ferrera P; Morimoto S; Camacho-Arroyo I
    J Neurobiol; 2004 Sep; 60(4):473-80. PubMed ID: 15307151
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Cytochemical features of cortical neurons during the recovery period following early visual deprivation].
    Gershteĭn LM
    Tsitologiia; 1976 Dec; 18(12):1474-8. PubMed ID: 1025794
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Changes of MAP2 phosphorylation during brain development.
    Riederer BM; Draberova E; Viklicky V; Draber P
    J Histochem Cytochem; 1995 Dec; 43(12):1269-84. PubMed ID: 8537643
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Identification of Munc13-3 as a candidate gene for critical-period neuroplasticity in visual cortex.
    Yang CB; Zheng YT; Li GY; Mower GD
    J Neurosci; 2002 Oct; 22(19):8614-8. PubMed ID: 12351735
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dark-rearing fails to affect the basal dendritic fields of layer 3 pyramidal cells in the kitten's visual cortex.
    Tieman SB; Zec N; Tieman DG
    Brain Res Dev Brain Res; 1995 Jan; 84(1):39-45. PubMed ID: 7720215
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Quantification of Filamentous Actin (F-actin) Puncta in Rat Cortical Neurons.
    Li H; Aksenova M; Bertrand SJ; Mactutus CF; Booze R
    J Vis Exp; 2016 Feb; (108):e53697. PubMed ID: 26889716
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification of α-chimaerin as a candidate gene for critical period neuronal plasticity in cat and mouse visual cortex.
    Yang CB; Zheng YT; Kiser PJ; Mower GD
    BMC Neurosci; 2011 Jul; 12():70. PubMed ID: 21767388
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Very brief visual experience eliminates plasticity in the cat visual cortex.
    Mower GD; Christen WG; Caplan CJ
    Science; 1983 Jul; 221(4606):178-80. PubMed ID: 6857278
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Visual stimulation-induced phosphorylation of neurofilament-L in the visual cortex of dark-reared rats.
    Hashimoto R; Nakamura Y; Imamura K; Nakadate K; Kashiwagi Y; Matsumoto N; Takeda M
    Eur J Neurosci; 2001 Oct; 14(8):1237-45. PubMed ID: 11703453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.