These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8558254)

  • 41. On the origin of presynaptic depolarization of group I muscle afferents in Clarke's column in the cat.
    Jankowska E; Padel Y
    Brain Res; 1984 Mar; 295(2):195-201. PubMed ID: 6713181
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Membrane potential and input resistance of cat spinal motoneurons in wakefulness and sleep.
    Glenn LL; Dement WC
    Behav Brain Res; 1981 Mar; 2(2):231-6. PubMed ID: 7248060
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Firing rates and patterns of midbrain reticular neurons during steady and transitional states of the sleep-waking cycle.
    Steriade M; Oakson G; Ropert N
    Exp Brain Res; 1982; 46(1):37-51. PubMed ID: 7067790
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Low sensitivity of dorsal spinocerebellar neurons to limb movement speed.
    Bosco G; Poppele RE
    Exp Brain Res; 1999 Apr; 125(3):313-22. PubMed ID: 10229022
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spike-Based Functional Connectivity in Cerebral Cortex and Hippocampus: Loss of Global Connectivity Is Coupled to Preservation of Local Connectivity During Non-REM Sleep.
    Olcese U; Bos JJ; Vinck M; Lankelma JV; van Mourik-Donga LB; Schlumm F; Pennartz CM
    J Neurosci; 2016 Jul; 36(29):7676-92. PubMed ID: 27445145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ventral hippocampus spikes during sleep, wakefulness, and arousal in the cat.
    Hartse KM; Eisenhart SF; Bergmann BM; Rechtschaffen A
    Sleep; 1979; 1(3):231-46. PubMed ID: 504871
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Information processed by dorsal horn spinocerebellar tract neurones in the cat.
    Edgley SA; Jankowska E
    J Physiol; 1988 Mar; 397():81-97. PubMed ID: 3411521
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A determination of excitability changes in dorsal spinocerebellar tract neurons from spike-train analysis.
    Knox CK; Kubota S; Poppele RE
    J Neurophysiol; 1977 May; 40(3):626-46. PubMed ID: 874532
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Natural waking and sleep states: a view from inside neocortical neurons.
    Steriade M; Timofeev I; Grenier F
    J Neurophysiol; 2001 May; 85(5):1969-85. PubMed ID: 11353014
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oscillations of the spontaneous slow-wave sleep rhythm in lateral geniculate nucleus relay neurons of behaving cats.
    Fourment A; Hirsch JC; Marc ME
    Neuroscience; 1985 Apr; 14(4):1061-75. PubMed ID: 2987753
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibition of dorsal spinocerebellar tract cells by interneurones in upper and lower lumbar segments in the cat.
    Hongo T; Jankowska E; Ohno T; Sasaki S; Yamashita M; Yoshida K
    J Physiol; 1983 Sep; 342():145-59. PubMed ID: 6631728
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The ultrastructural basis for synaptic transmission between primary muscle afferents and neurons in Clarke's column of the cat.
    Walmsley B; Wieniawa-Narkiewicz E; Nicol MJ
    J Neurosci; 1985 Aug; 5(8):2095-106. PubMed ID: 2991483
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The extent of polysynaptic responses in the dorsal spinocerebellar tract to stimulation of group I afferent fibers in gastrocnemius-soleus.
    Osborn CE; Poppele RE
    J Neurosci; 1988 Jan; 8(1):316-9. PubMed ID: 3339414
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo.
    Timofeev I; Grenier F; Steriade M
    J Physiol Paris; 2000; 94(5-6):343-55. PubMed ID: 11165905
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Responses of identified spinal neurones to acetylcholine applied by micro-electrophoresis.
    Myslinski NR; Randić M
    J Physiol; 1977 Jul; 269(1):195-219. PubMed ID: 894542
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synaptic potentials evoked in cat dorsal spinocerebellar tract neurones by impulses in single group I muscle afferents.
    Walmsley B
    J Physiol; 1989 Aug; 415():423-31. PubMed ID: 2640466
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Responses of cat dorsal spino-cerebellar tract neurons to sinusoidal stretching of the gastrocnemius muscle.
    Kröller J; Grüsser OJ
    Pflugers Arch; 1982 Nov; 395(2):99-107. PubMed ID: 7177786
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intracellular recording of lumbar motoneuron membrane potential during sleep and wakefulness.
    Morales FR; Chase MH
    Exp Neurol; 1978 Dec; 62(3):821-7. PubMed ID: 750226
    [No Abstract]   [Full Text] [Related]  

  • 60. Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep.
    Datta S; Siwek DF
    J Neurophysiol; 1997 Jun; 77(6):2975-88. PubMed ID: 9212250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.