These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 8558384)
41. Effect of drug loading and molecular weight of cellulose acetate propionate on the release characteristics of theophylline microspheres. Shukla AJ; Price JC Pharm Res; 1991 Nov; 8(11):1396-400. PubMed ID: 1798676 [TBL] [Abstract][Full Text] [Related]
42. A new biodegradable polythiourethane as controlled release matrix polymer. Campiñez MD; Ferris C; de Paz MV; Aguilar-de-Leyva A; Galbis J; Caraballo I Int J Pharm; 2015 Mar; 480(1-2):63-72. PubMed ID: 25579868 [TBL] [Abstract][Full Text] [Related]
43. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Serra L; Doménech J; Peppas NA Biomaterials; 2006 Nov; 27(31):5440-51. PubMed ID: 16828864 [TBL] [Abstract][Full Text] [Related]
44. Novel Polyurethane Matrix Systems Reveal a Particular Sustained Release Behavior Studied by Imaging and Computational Modeling. Campiñez MD; Caraballo I; Puchkov M; Kuentz M AAPS PharmSciTech; 2017 Jul; 18(5):1544-1553. PubMed ID: 27600323 [TBL] [Abstract][Full Text] [Related]
45. Biodegradable paclitaxel-loaded microparticles prepared from novel block copolymers: influence of polymer composition on drug encapsulation and release. Sartori S; Caporale A; Rechichi A; Cufari D; Cristallini C; Barbani N; Giusti P; Ciardelli G J Pept Sci; 2013 Apr; 19(4):205-13. PubMed ID: 23495215 [TBL] [Abstract][Full Text] [Related]
46. Effect of drug (core) particle size on the dissolution of theophylline from microspheres made from low molecular weight cellulose acetate propionate. Shukla AJ; Price JC Pharm Res; 1989 May; 6(5):418-21. PubMed ID: 2748534 [TBL] [Abstract][Full Text] [Related]
47. Oral sustained-release drug delivery systems using polycarbonate microspheres capable of floating on the gastric fluid. Thanoo BC; Sunny MC; Jayakrishnan A J Pharm Pharmacol; 1993 Jan; 45(1):21-4. PubMed ID: 8094440 [TBL] [Abstract][Full Text] [Related]
48. Analysis of matrix dosage forms during dissolution testing using raman microscopy. Haaser M; Windbergs M; McGoverin CM; Kleinebudde P; Rades T; Gordon KC; Strachan CJ J Pharm Sci; 2011 Oct; 100(10):4452-9. PubMed ID: 21560128 [TBL] [Abstract][Full Text] [Related]
49. Bimodal release of theophylline from "seed-matrix" beads made of acrylic polymers. Ly J; Wu XY Pharm Dev Technol; 1999 May; 4(2):257-67. PubMed ID: 10231887 [TBL] [Abstract][Full Text] [Related]
50. Degradative-release as a function of drug structure from LDI-glycerol polyurethanes. Sivak WN; Zhang J; Petoud S; Beckman EJ Biomed Mater Eng; 2010; 20(5):269-81. PubMed ID: 21084739 [TBL] [Abstract][Full Text] [Related]
51. Investigations on the physical structure and the mechanism of drug release from an enteric matrix microspheres with a near-zero-order release kinetics using SEM and quantitative FTIR. Obeidat WM; Obeidat SM; Alzoubi NM AAPS PharmSciTech; 2009; 10(2):615-23. PubMed ID: 19444619 [TBL] [Abstract][Full Text] [Related]
52. Reversibly pH-responsive polyurethane membranes for on-demand intravaginal drug delivery. Kim S; Chen Y; Ho EA; Liu S Acta Biomater; 2017 Jan; 47():100-112. PubMed ID: 27717914 [TBL] [Abstract][Full Text] [Related]
53. Study of the properties of the new biodegradable polyurethane PU (TEG-HMDI) as matrix forming excipient for controlled drug delivery. Campiñez MD; Aguilar-de-Leyva Á; Ferris C; de Paz MV; Galbis JA; Caraballo I Drug Dev Ind Pharm; 2013 Nov; 39(11):1758-64. PubMed ID: 24087856 [TBL] [Abstract][Full Text] [Related]
54. Controlled delivery of therapeutics from microporous membranes. I. Fabrication and characterization of microporous polyurethane membranes containing polymeric microspheres. Kreitz MR; Webber WL; Galletti PM; Mathiowitz E Biomaterials; 1997 Apr; 18(8):597-603. PubMed ID: 9134159 [TBL] [Abstract][Full Text] [Related]
55. Facile route to synthesize polyurethane hollow microspheres with size-tunable single holes. Li M; Xue J Langmuir; 2011 Apr; 27(7):3229-32. PubMed ID: 21341811 [TBL] [Abstract][Full Text] [Related]
56. Improvement of physicochemical and biopharmaceutical properties of theophylline by poly(ethylene glycol) conjugates. Zacchigna M; Di Luca G; Cateni F; Zorzet S; Maurich V Farmaco; 2003 Dec; 58(12):1307-12. PubMed ID: 14630244 [TBL] [Abstract][Full Text] [Related]
57. Sustained-release microsphere formulation containing an agrochemical by polyurethane polymerization during an agitation granulation process. Terada T; Tagami M; Ohtsubo T; Iwao Y; Noguchi S; Itai S Int J Pharm; 2016 Jul; 509(1-2):328-337. PubMed ID: 27246815 [TBL] [Abstract][Full Text] [Related]
58. Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. Berkland C; Kipper MJ; Narasimhan B; Kim KK; Pack DW J Control Release; 2004 Jan; 94(1):129-41. PubMed ID: 14684277 [TBL] [Abstract][Full Text] [Related]
59. Preparation and study of release kinetics of rosin pentaerythritol ester microcapsules. Sheorey DS; Dorle AK J Microencapsul; 1994; 11(1):11-7. PubMed ID: 8138870 [TBL] [Abstract][Full Text] [Related]
60. Preparation and characterization of microencapsulated gelospheres for controlled oral theophylline delivery. Vyas SP; Sood A; Venugopalan P; Venkatesan N J Microencapsul; 2000; 17(6):767-75. PubMed ID: 11063423 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]