These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8558387)

  • 41. In vitro drug liberation and kinetics of sustained release indomethacin suppository.
    Uzunkaya G; Bergişadi N
    Farmaco; 2003 Jul; 58(7):509-12. PubMed ID: 12818689
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Floating microspheres of carvedilol as gastro retentive drug delivery system: 3(2) full factorial design and in vitro evaluation.
    Nila MV; Sudhir MR; Cinu TA; Aleykutty NA; Jose S
    Drug Deliv; 2014 Mar; 21(2):110-7. PubMed ID: 24028280
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation of enteric-coated microspheres of Mycoplasma hyopneumoniae vaccine with cellulose acetate phthalate: (II). Effect of temperature and pH on the stability and release behaviour of microspheres.
    Lin SY; Tzan YL; Weng CN; Lee CJ
    J Microencapsul; 1991; 8(4):537-45. PubMed ID: 1798023
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determination of microsphere solidification time in the solvent evaporation process.
    Mateović T; Ratnik M; Bogataj M; Mrhar A
    J Microencapsul; 2005 Feb; 22(1):81-90. PubMed ID: 16019893
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of preparation conditions on the monodispersity of albumin microspheres.
    el-Mahdy M; Ibrahim ES; Safwat S; el-Sayed A; Ohshima H; Makino K; Muramatsu N; Kondo T
    J Microencapsul; 1998; 15(5):661-73. PubMed ID: 9743920
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation and characterization of sustained-release microspheres of chlorpromazine.
    Gao ZG; Oh KH; Kim CK
    J Microencapsul; 1998; 15(1):75-83. PubMed ID: 9463809
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of temperature-increase rate on drug release characteristics of dextran microspheres prepared by emulsion solvent evaporation process.
    Miyazaki Y; Onuki Y; Yakou S; Takayama K
    Int J Pharm; 2006 Nov; 324(2):144-51. PubMed ID: 16828994
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An intelligent multicompartmental system based on thermo-sensitive starch microspheres for temperature-controlled release of drugs.
    Fundueanu G; Constantin M; Ascenzi P; Simionescu BC
    Biomed Microdevices; 2010 Aug; 12(4):693-704. PubMed ID: 20414809
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The influence of chitosan on in vitro properties of Eudragit RS microspheres.
    Kriznar B; Mateović T; Bogataj M; Mrhar A
    Chem Pharm Bull (Tokyo); 2003 Apr; 51(4):359-64. PubMed ID: 12672985
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel methods of microparticulate production: application to drug delivery.
    Reyderman L; Stavchansky S
    Pharm Dev Technol; 1996 Oct; 1(3):223-9. PubMed ID: 9552304
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The influence of drug type on the release profiles from Surelease-coated pellets.
    Sadeghi F; Ford JL; Rajabi-Siahboomi A
    Int J Pharm; 2003 Mar; 254(2):123-35. PubMed ID: 12623188
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation of human serum albumin microspheres by a novel acetone-heat denaturation method.
    Chen CQ; Lin W; Coombes AG; Davis SS; Illum L
    J Microencapsul; 1994; 11(4):395-407. PubMed ID: 7931939
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The use of response surface methodology in the evaluation of captopril microparticles manufactured using an oil in oil solvent evaporation technique.
    Khamanga SM; Walker RB
    J Microencapsul; 2012; 29(1):39-53. PubMed ID: 22126317
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Formation and in-vitro evaluation of theophylline-loaded poly(methyl methacrylate) microspheres.
    Pongpaibul Y; Maruyama K; Iwatsuru M
    J Pharm Pharmacol; 1988 Aug; 40(8):530-3. PubMed ID: 2907004
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation of biodegradable microspheres and matrix devices containing naltrexone.
    Dinarvand R; Moghadam SH; Mohammadyari-Fard L; Atyabi F
    AAPS PharmSciTech; 2003; 4(3):E34. PubMed ID: 14621966
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preparation of albumin microspheres by an improved process.
    Katti D; Krishnamurti N
    J Microencapsul; 1999; 16(2):231-42. PubMed ID: 10080116
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of drug (core) particle size on the dissolution of theophylline from microspheres made from low molecular weight cellulose acetate propionate.
    Shukla AJ; Price JC
    Pharm Res; 1989 May; 6(5):418-21. PubMed ID: 2748534
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation and evaluation of microcapsules using polymerized rosin as a novel wall forming material.
    Fulzele SV; Satturwar PM; Kasliwal RH; Dorle AK
    J Microencapsul; 2004 Feb; 21(1):83-9. PubMed ID: 14718188
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of drug content and agglomerate size on tabletability and drug release characteristics of bromhexine hydrochloridetalc agglomerates prepared by crystallo-co-agglomeration.
    Jadhav N; Pawar A; Paradkar A
    Acta Pharm; 2010 Mar; 60(1):25-38. PubMed ID: 20228039
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Release profiles of theophylline from microspheres consisting of dextran derivatives and cellulose acetate butyrate: effect of polyion complex formation.
    Miyazaki Y; Yakou S; Nagai T; Takayama K
    Drug Dev Ind Pharm; 2003 Aug; 29(7):795-804. PubMed ID: 12906337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.